• Title/Summary/Keyword: 확산 텐서 영상

Search Result 58, Processing Time 0.032 seconds

Usefulness of DTI-based three dimensional corticospinal tractography in children with hemiplegic cerebral palsy (편마비를 가진 뇌성마비 환아에서 확산 텐서강조영상을 이용한 3차원 피질척수로 영상의 유용성)

  • Yeo, Ji Hyun;Son, Su Min;Lee, Eun Sil;Moon, Han Ku
    • Clinical and Experimental Pediatrics
    • /
    • v.52 no.1
    • /
    • pp.99-104
    • /
    • 2009
  • Purpose : Magnetic resonance diffusion tensor imaging-based three-dimensional fiber tractography (DTI-FT) is a new method which demonstrates the orientation and integrity of white matter fibers in vivo. However, clinical application on children with cerebral palsy is still under investigation. We present various abnormal patterns of DTI-FT findings and accordance rate with clinical findings in children with hemiplegic cerebral palsy, to recognize the use fulness of DTI-FT. Methods : The thirteen children with hemiplegic cerebral palsy evaluated at Yeungnam University hospital from March, 2003 to August, 2007 were enrolled in this study and underwent magnetic resonance DTI-FT of the corticospinal tracts. Two regions of interest (ROI) were applied and the termination criteria were fractional anisotropy ${\geq}0.3$, angle ${\leq}70^{\circ}$. Results : The patterns and distribution of abnormal DTI-based corticospinal tractographic findings were interruption(10 cases, 76.9%), reduction of fiber volume (8 cases, 61.5%), agenesis of corticospinal tract (3 cases, 23.1%), transcallosal fiber (2 cases, 15.4%) and, aberrant corticospinal tracts (4 cases, 30.8%). Abnormal DTI-based corticospinal tractographic findings were in accordance with the clinical findings of cerebral palsy in 84.6% of the enrolled patients. Conclusion : Our results suggest that DTI-FT would be a use ful modality in the assessment of the corticospinal tract abnormalities in children with hemiplegic cerebral palsy.

Semi-automated Tractography Analysis using a Allen Mouse Brain Atlas : Comparing DTI Acquisition between NEX and SNR (알렌 마우스 브레인 아틀라스를 이용한 반자동 신경섬유지도 분석 : 여기수와 신호대잡음비간의 DTI 획득 비교)

  • Im, Sang-Jin;Baek, Hyeon-Man
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.2
    • /
    • pp.157-168
    • /
    • 2020
  • Advancements in segmentation methodology has made automatic segmentation of brain structures using structural images accurate and consistent. One method of automatic segmentation, which involves registering atlas information from template space to subject space, requires a high quality atlas with accurate boundaries for consistent segmentation. The Allen Mouse Brain Atlas, which has been widely accepted as a high quality reference of the mouse brain, has been used in various segmentations and can provide accurate coordinates and boundaries of mouse brain structures for tractography. Through probabilistic tractography, diffusion tensor images can be used to map comprehensive neuronal network of white matter pathways of the brain. Comparisons between neural networks of mouse and human brains showed that various clinical tests on mouse models were able to simulate disease pathology of human brains, increasing the importance of clinical mouse brain studies. However, differences between brain size of human and mouse brain has made it difficult to achieve the necessary image quality for analysis and the conditions for sufficient image quality such as a long scan time makes using live samples unrealistic. In order to secure a mouse brain image with a sufficient scan time, an Ex-vivo experiment of a mouse brain was conducted for this study. Using FSL, a tool for analyzing tensor images, we proposed a semi-automated segmentation and tractography analysis pipeline of the mouse brain and applied it to various mouse models. Also, in order to determine the useful signal-to-noise ratio of the diffusion tensor image acquired for the tractography analysis, images with various excitation numbers were compared.

Diffusion Tensor Imaging in Nocturnal Frontal Lobe Epilepsy

  • Son, Chul-Ho;Woo, Sung-Gu;Cho, Yong-Won;Lee, Hyung;Han, Bong-Soo
    • Proceedings of the KSMRM Conference
    • /
    • 2002.11a
    • /
    • pp.84-84
    • /
    • 2002
  • 목적: 야간성 전두협 발작 (Nocturnal frontal lobe epilepsy NFLE)은 임상적으로 특징적인 야간성 운동성 발작으로 잘 알려져 있지만 일반적인 MR 영상에서는 대부분에서는 특이한 소견을 보이지 않아 확산 텐서 영상 (DTI)에서의 이상 소견 발현 유무를 알아보고자 한다. 대상 및 방법: 임상적 소견과, EEG 소견으로 진단된 NFLE 환자 6명을 대상으로 DTI 영상을 촬영하였다. 남자 2명, 여자 4명으로 평균연령은 32세 이었다. DTI영상은 single shot spin echo EPI 펄스 열을 사용하였고 사용한 영상 변수는 b value는 0, 1000 s/$\textrm{mm}^2$, TR 10000 msec, TE 71.8/72.3 msec, matrix 128$\times$128 (256 reconstruction), FOV 23cm, 5mm thickness, 2mm interstice gap, NEX 1. 19 slices, time은 4min 21sec (25방향) 이었다. 대조군으로 정상 성인 10명 (평균연령 31세)에서 동일한 방법으로 DTI 영상을 시행하여 분할 비등방도 (fractional anisotropy) 영상을 얻고 전두엽 백질에서 분할 비등방도 값을 측정하여 NFLE 환자군과 비교하였다.

  • PDF

Analysis of Differences in Fractional Anisotropy of Diffusion Tensor Images of Basal Ganglia in the Brain Gray Matter according to Smoking (뇌 회백질 기저핵 부위의 흡연유무에 따른 확산텐서 비등방도 측정값 차이분석)

  • Kwak, Jong Hyeok;Jeong, Jae Beom;Son, Bong Kyeong;Sung, Soon Ki;Kim, Seong Jin;Kang, Dong Won;Park, Chan Hyeok;Im, Hyeon Wha;Lee, Yu Hui;Lee, Bong Sang;Kim, Dong hyeon
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.2
    • /
    • pp.261-269
    • /
    • 2018
  • The fractional anisotropy value of the basal ganglia fibers in the brain gray matter region was analyzed by Tract-Based Spatial Statics(TBSS) method after acquiring the diffusion tensor image to identify the presence or absence of brain white matter damage to smoking in male. As a result of measurement analysis, the fractional anisotropy measurement value was lower in smokers than non-smokers in all areas, and the FA value was statistically significant. smoking significantly affects all the anatomic micro structural changes in the brain gray matter and damages the nerve fiber tract. As a result, it can affects functional abnormalities related to the minute changes of the brain due to smoking.

Measurement of the Anisotropy of Nerve Fibers in the Hippocampal Region according to the Drinking beginning Age using TBSS(Tract-Based Spatial Statics) (TBSS(Tract-Based Spatial Statics)를 이용한 음주 시작연령에 따른 해마 영역 부위의 신경섬유의 비등방도 측정)

  • Kwak, Jong Hyeok;Kim, Gyeong Rip
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.6
    • /
    • pp.781-790
    • /
    • 2020
  • Tract-Based Spatial Statics (TBSS) after obtaining the image by examining a diffusion tensor image that can determine the presence or absence of damage to the cerebral white matter and gray matter for middle-aged men aged 30 to 50 with the starting age of drinking as a variable. As a result of measuring and analyzing the FA (fractional anisotropy) value of the brain gray matter region to the hippocampal region nerve fibers, the lower the alcohol start age in all regions, the lower the anisotropy measurement value, but the FA value was statistically significant. The study results indicated by the FA results measured in this study are that the earlier the drinking start age, the more severe the morphological changes in all neurological and anatomical brain regions in the hippocampal region of the brain gray matter and seriously affect the nerve fiber tissue. It can be said to harm and damage nerve fibers and affect functional morphological variations associated with alcohol.

Fractional Anisotropy of Diffusion Tensor Imaging as a Predict Factor in Patient with Acute Cerebral Infarction (급성 뇌경색 환자에서 예후 추측인자로서의 확산텐서영상 비등방도)

  • Kim, Sung-Gil;Eun, Sung-Jong
    • Journal of the Korean Society of Radiology
    • /
    • v.4 no.3
    • /
    • pp.13-18
    • /
    • 2010
  • Purpose : Diffusion tensor imaging(DTI) allows the visualization of fiber tract damage in patients with cerebral infarction. The purpose of this study is to evaluate the correlation between degree of NIH stoke scale and fractional anisotropy (FA) in patient with cerebral infarction. Material and Methods : 16 patients aged 36~77 years(male : 11, female : 5, mean age : 61y), diagnosed cerebral infarction by diffusion weighted imaging(DWI), underwent 24 directional diffusion tensor imaging(DTI). Patients had the DTI taken within 3days of stroke onset. Comparison of DWI, FA value on DTI were measured infarcted area and counter part of specific region of interest (ROI). And evaluation of differences between clinically improved patient group (n=9) and unimproved patient group (n=7) until 2 week follow up after development of cerebral infarction. Clinical status was scaled by NIH stroke scale. Results : Quantitative measurements of FA confirmed statistically the significant diffusion changes in the infarct compared with the matched-counter part region. In DWI, the infarcted area shows high signal intensity, however FA value on DTI was lower than normal brain parenchyma. The FA value of clinically improved patient by NIH stroke scale was 0.49, and the value of contralateral normal brain parenchyma was 0.41. On the contrary, FA value of infarcted area shows about 15% lower than normal brain parenchyma. But, the FA value of unimproved patient by NIH stroke scale represents a half those of contralateral normal brain parenchyma (0.28 on infarcted area vs. 0.56 on normal brain parenchyma). So, the FA value of unimproved patient group was considerably less than those of improved. Conclusion : It is concluded that the unimproved patient group after cerebral infarction showed much less FA value than that of normal brain parenchyma. The FA value of DTI may be one of the useful parameter to predict outcome of cerebral infarction patients.

Correlation Analysis of Diffusion Metrics (FA and ADC) Values Derived from Diffusion Tensor Magnetic Resonance Imaging in Breast Cancer (유방암의 확산텐서 자기공명 영상에서 유도된 확산 지표(FA, ADC) 값의 연관성 분석)

  • Lee, Jae-Heun;Lee, Hyo-Yeong
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.6
    • /
    • pp.755-762
    • /
    • 2018
  • The purpose of this study was to compare the FA(faractional anisotropy) and ADC(apparent diffusion coefficient) values, which were derived from diffusion tensor imaging in breast cancer patients. The diffusion gradient used in this study was derived from quantitative diffusion indices using 20 directions(b-value, 0 and $1,000s/mm^2$). Quantitative analysis was analyzed using Pearson's correction and qualitative analysis using for correction coefficients. As a result, $FA_{min}$, $FA_{mean}$ and $FA_{max}$ were $0.098{\pm}0.065$, $0.302{\pm}0.142$ and $0.634{\pm}0.236$, respectively(p > 0.05). The $ADC_{min}$, $ADC_{mean}$ and $ADC_{max}$ were $0.741{\pm}0.403$, $1.095{\pm}0.394$ and $1.530{\pm}0.447$, respectively(p > 0.05). The $FA_{min}$, $FA_{mean}$, and $FA_{max}$ mean values were $0.132{\pm}0.050$, $0.418{\pm}0.094$, and $0.770{\pm}0.164$ for Category 6 and Kinetic Curve Pattern III, respectively. $ADC_{min}$, $ADC_{mean}$, and $ADC_{max}$ were $0.753{\pm}0.189$, $1.120{\pm}0.236$, and $1.615{\pm}0.372$, respectively. Quantitative analysis showed negative correlation between $ADC_{mean}-FA_{mean}$ and $ADC_{max}-FA_{max}$(p = 0.001, 0.003). The qalitative analysis showed ADC 0.628(p = 0.001), FA 0.620(p = 0.001) in the internal evaluations, ADC 0.677(p = 0.001), FA 0.695(p = 0.001) in external evaluations. In conclusion, based on the morphological examination, time to signal intensity graph is the form of wash-out(pattern III) in the dynamic contrast enhance examination, As a result, the $ADC_{mean}$ $1.120{\pm}0.236$ and $FA_{mean}$ values were $0.032{\pm}0.142$ with a negative correlation (Y=1.44-1.12X). Therefore, If we understand the shape of time to signal intensity graph and the relationship between ADC and FA, It will be a criterion for distinguishing malignant diseases in breast cancer.

Analytical Methods for the Analysis of Structural Connectivity in the Mouse Brain (마우스 뇌의 구조적 연결성 분석을 위한 분석 방법)

  • Im, Sang-Jin;Baek, Hyeon-Man
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.4
    • /
    • pp.507-518
    • /
    • 2021
  • Magnetic resonance imaging (MRI) is a key technology that has been seeing increasing use in studying the structural and functional innerworkings of the brain. Analyzing the variability of brain connectome through tractography analysis has been used to increase our understanding of disease pathology in humans. However, there lacks standardization of analysis methods for small animals such as mice, and lacks scientific consensus in regard to accurate preprocessing strategies and atlas-based neuroinformatics for images. In addition, it is difficult to acquire high resolution images for mice due to how significantly smaller a mouse brain is compared to that of humans. In this study, we present an Allen Mouse Brain Atlas-based image data analysis pipeline for structural connectivity analysis involving structural region segmentation using mouse brain structural images and diffusion tensor images. Each analysis method enabled the analysis of mouse brain image data using reliable software that has already been verified with human and mouse image data. In addition, the pipeline presented in this study is optimized for users to efficiently process data by organizing functions necessary for mouse tractography among complex analysis processes and various functions.

Recent Neuroimaging Study in Schizophrenia (정신분열병의 최신 뇌영상 연구)

  • Jeong, Bum-Seok;Choi, Jee-Wook
    • Korean Journal of Biological Psychiatry
    • /
    • v.18 no.2
    • /
    • pp.55-60
    • /
    • 2011
  • Neuroimaging studies in schizophrenia have remarkably increased and provided some clues to understand its pathophysiology. Here, we reviewed the neuroimaging, studies including volume analysis, functional magnetic resonance imaging (MRI) and diffusion tensor imaging, and findings in both early stage schizophrenia and high-risk group. The reviewed studies suggested that the brain with schizophrenia showed both regional deficits and dysconnectivity of neural circuit in the first episode, even high-risk group as well as chronic schizophrenia. Multimodal neuroimaging or combined approach with genetic, electro-or magneto-encephalographic data could provide promising results to understand schizophrenia in the near future.

Anatomical Brain Connectivity Map of Korean Children (한국 아동 집단의 구조 뇌연결지도)

  • Um, Min-Hee;Park, Bum-Hee;Park, Hae-Jeong
    • Investigative Magnetic Resonance Imaging
    • /
    • v.15 no.2
    • /
    • pp.110-122
    • /
    • 2011
  • Purpose : The purpose of this study is to establish the method generating human brain anatomical connectivity from Korean children and evaluating the network topological properties using small-world network analysis. Materials and Methods : Using diffusion tensor images (DTI) and parcellation maps of structural MRIs acquired from twelve healthy Korean children, we generated a brain structural connectivity matrix for individual. We applied one sample t-test to the connectivity maps to derive a representative anatomical connectivity for the group. By spatially normalizing the white matter bundles of participants into a template standard space, we obtained the anatomical brain network model. Network properties including clustering coefficient, characteristic path length, and global/local efficiency were also calculated. Results : We found that the structural connectivity of Korean children group preserves the small-world properties. The anatomical connectivity map obtained in this study showed that children group had higher intra-hemispheric connectivity than inter-hemispheric connectivity. We also observed that the neural connectivity of the group is high between brain stem and motorsensory areas. Conclusion : We suggested a method to examine the anatomical brain network of Korean children group. The proposed method can be used to evaluate the efficiency of anatomical brain networks in people with disease.