• Title/Summary/Keyword: 확률 예측치

Search Result 143, Processing Time 0.025 seconds

Prediction of spring precipitation in the Geum River basin using global climate indices and artificial neural network model (글로벌 기후지수와 인공신경망모형을 이용한 금강권역의 봄철 강수량 예측)

  • Chul-Gyum Kim;Jeongwoo Lee;Hyeonjun Kim
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.292-292
    • /
    • 2023
  • 본 연구에서는 인공신경망을 이용한 통계적 모형을 구성하여 금강권역의 봄철(3~5월) 강수량 예측을 수행하였다. 통계적 모형의 예측인자로서는 NOAA 등에서 제공하는 AAO, AMM, AO 등 36종의 기후지수와 대상권역인 금강권역의 강수량, 기온 등의 기상인자 8종 등 총 44종의 기후지수를 활용하였다. 예측대상기간을 기준으로 선행기간(1~18개월)에 따른 상관성을 분석하여 상관도가 높은 10개의 기후지수를 예측인자로 선정하였다. 예측모형 형태는 10개의 입력층과 1개의 은닉층으로 되어 있는 인공신경망모형을 구성하였다. 모형 구성과정에서의 불확실성을 최소화하고 예측모형의 적합도를 높이기 위해 예측대상기간을 기준으로 과거 40년간의 자료에 대해 임의로 20년간 자료를 선별하여 모형을 구성하고, 너머지 기간에 대해 검증하는 무작위 교차검증을 반복하여, 예측대상기간 및 예측시점에 따라 각각 적합도가 높은 1000개의 예측모형을 선별하였다. 과거기간(1991~2022년)을 대상으로 예측시점에 따라 각 연도별 1000개의 예측결과를 도출하여, 실제 해당년도의 관측값과의 비교를 통해 예측성을 분석하였다. 예측성은 크게 예측치의 최대값과 최소값 범위 및 예측치의 25%~75% 범위 안에 관측치가 포함될 확률, 그리고 과거 관측값의 3분위 구간을 기준으로 한 예측확률 등을 평가하였다. 관측치가 예측치의 범위 안에 포함될 확률은 평균 87.5%, 예측치의 25~75% 범위 안에 포함될 확률은 30.2%로 나타났으며, 3분위 예측확률은 35.6%로 분석되었다. 관측값과의 일대일 비교는 정확도가 떨어지지만 3분위 예측확률이 33.3% 이상인 점으로 볼 때 예측성은 확보된다고 볼 수 있다. 다만, 우리나라 강수량의 불규칙성과 통계적 모형 특성상 과거 관측되지 않은 패턴에 대해서는 예측이 어려운 문제가 있어, 특정년도의 예측결과가 관측치를 크게 벗어나는 경우도 종종 나타나고 있다.

  • PDF

유한모집단에서 모형-기반 합성추정치의 예측

  • Sin, Min-Ung;Kim, Ik-Chan
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2003.05a
    • /
    • pp.131-136
    • /
    • 2003
  • 소지역에서 유한모집단의 총계등을 추정하는데 있어서 모형-기반 합성치를 예측한다. 즉, 예측(prediction) 문제로 추정치를 다룬다. 초모집단(super-population) 확률 모형을 세우고 최적의 예측치를 유도한다.

  • PDF

Risk Analysis of Thaw Penetration Due to Global Climate Change in Cold Regions

  • Bae, Yoon-Shin
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.2
    • /
    • pp.45-51
    • /
    • 2009
  • A probabilistic approach may be adopted to predict freeze and thaw depths to account for the variability of (1) material properties, and (2) contemporary and future surface energy input parameters(e.g. air temperatures, cloud cover, snow cover) predicted with global climate models. To illustrate the probabilistic approach, an example of the predicted of thaw depths in cold regions is considered. More specifically, the Stefan equation is used together with the Monte Carlo simulation technique to make a probabilistic prediction of thaw penetration. The simulation results indicate that the variability in material properties, surface energy input parameters and temperature data can lead to significant uncertainty in predicting thaw penetration.

Probabilistic Daecheong Dam Streamflow Prediction using Weather Outlook Weighted Ensemble Streamflow Prediction (확률론적 통계분석을 이용한 대청댐 유입량 예측)

  • Lee, Sang-Jin;Kim, Jeong-Kon;Kim, Joo-Cheol;Woo, Dong-Hyeon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.303-303
    • /
    • 2011
  • 효율적인 수자원 관리를 위해서는 미래 수문자료의 예측치에 대한 구간을 추정하여 미래에 관측될 자료에 대한 정보를 얻는 문제는 어렵지만 중요한 부분에 해당한다. 특히 중장기 유량예측은 입력변수의 불확실성이 크므로 확률론적 방법을 적용한 예측이 유리하다. 본 연구에서는 SSARR 모형을 이용하여 현재 유역의 상태에 과거에 재현되었던 강우를 결합한 앙상블 유출시나리오를 생성하였다. 그리고 대청댐 월 유입량에 대한 확률론적 예측방안을 제시하기위하여 과거 시나리오의 관측 ESP(Ensemble Streamflow Prediction)확률 및 Croley방법, PDF-Ratio방법을 한국의 기상예측정보 실정에 맞는 가중치 부여방안으로 적용하여 분석하였다. 2010년도 상반기를 기준으로 각 분석 기법별 정확성을 검증한 결과 Croley, PDF-Ratio 등 기상전망을 가중치로 부여한 확률론적 예측기법의 효용성을 확인하였다.

  • PDF

선박접안속도 실측값의 확률분포특성에 관한 연구

  • Lee, Sang-Won;Jo, Jang-Won;Jo, Ik-Sun
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2018.11a
    • /
    • pp.320-322
    • /
    • 2018
  • 선박이 부두의 계류시설에 접촉할 때 발생하는 접안에너지는 해당선박의 접안속도에 가장 큰 영향을 받는다. 접안속도가 과다할 경우 부두에 접촉하는 사고로까지 이어질 수 있으므로 각각의 부두 특성에 맞는 적절한 접안속도를 설계하는 것이 중요하다. 선박접안속도의 경우, 일반적으로 대수정규분포를 따른다고 가정하고 있으나 국내에서는 이에 대한 검증이나 연구가 없어 해외의 사례를 바탕으로 설계접안 속도를 설정하고 있는 상황이다. 이에 본 연구에서는 부두의 선박접안속도를 설계하기 위한 통계학적인 접근으로 접안속도의 실측데이터를 토대로 그 빈도수를 히스토그램으로 표현하여 각각의 확률분포도와 비교 분석하고, 확률분포에 대한 검정법으로 K-S (Kolmogorov-Smirnov Test) 검정, A-D(Anderson-Darling) 검정, Q-Q(Quantile-Quantile) Plot 등을 이용하여 접안속도 분포에 적합한 확률분포도를 확인하였다. 분석 결과, 선박접안속도의 빈도분포는 일반적으로 알려진 대수정규분포 뿐만 아니라 Weibull 분포와 적합한 형태를 보이는 것을 알 수 있었다. 추가적으로 본 연구에서는 초과확률 개념에서의 접안속도의 예측치를 구하여 구해진 1/1000, 1/10000의 접안속도 예측치를 설계접안속도의 참고자료로 제안하고자 한다.

  • PDF

An Effective Concept Drift Detection Method on Streaming Data Using Probability Estimates (스트리밍 데이터에서 확률 예측치를 이용한 효과적인 개념 변화 탐지 방법)

  • Kim, Young-In;Park, Cheong Hee
    • Journal of KIISE
    • /
    • v.43 no.6
    • /
    • pp.718-723
    • /
    • 2016
  • In streaming data analysis, detecting concept drift accurately is important to maintain the performance of classification model. Error rates are usually used for concept drift detection. However, by describing prediction results with only binary values of 0 or 1, useful information about a behavior pattern of a classifier can be lost. In this paper, we propose an effective concept drift detection method which describes performance pattern of a classifier by utilizing probability estimates for class prediction and detects a significant change in a classifier behavior. Experimental results on synthetic and real streaming data show the efficiency of the proposed method for detecting the occurrence of concept drift.

Probabilistic Reservoir Inflow Forecast Using Nonparametric Methods (비모수적 기법에 의한 확률론적 저수지 유입량 예측)

  • Lee, Han-Goo;Kim, Sun-Gi;Cho, Yong-Hyon;Chong, Koo-Yol
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.184-188
    • /
    • 2008
  • 추계학적 시계열 분석은 크게 수문자료의 장기간 합성과 실시간 예측으로 구분해 볼 수 있다. 장기간 합성은 주로 수문자료의 추계적 특성을 반영한 수자원 시스템의 운영율 개발에 이용되어 왔다. 반면에 실시간 예측은 수자원 시스템의 순응적(adaptive) 관리에 적용되고 있다. 두 개념의 차이로 전자는 시계열 자료를 합성하여 발생 가능한 모든 수문조합을 얻고자 하는 것이라면 후자는 전 시간의 수문량을 조건으로 하는 다음 시간의 값을 순응적으로 예측하는 것이라 할 수 있다. 수문자료의 합성과 예측에는 크게 결정론적, 확률론적 방법의 두 가지 대별될 수 있다. 결정론적 모델링 방법에는 인공신경망이나 Fuzzy 기법 등을 이용할 수 있으며, 확률론적 방법에는 ARMAX 등의 모수적 기법과 k-NN(k-nearest neighbor bootstrap resampling), KDE(kernel density estimates), 추계학적 인공신경망 등의 비모수적 기법으로 분류할 수 있다. 본 연구에서는 대표적 비모수적 기법인 k-NN를 이용하여 충주댐을 대상으로 월 및 일 유입량 자료의 예측 정도를 살펴보았다. 전 시간 관측치를 조건으로 하는 다음 시간의 조건부 확률분포를 구하여 평균값을 계산한 후 관측치와 비교함으로써 모형의 정도를 살펴보았다. 그리고 실시간 저수지 운영에 이 기법의 활용성과 장단점도 살펴보았다. 모형개발 절차로 모형의 보정을 거쳐 검증을 실시하였다. 결론적으로 월 및 일 유입량 예측에 k-NN 기법이 실무적으로 적용될 수 있었으며, 장점으로는 k-NN 기법이 다른 기법보다 모델링 절차가 비교적 쉬워 저수지 운영 최적화 등 타 시스템과의 연계에 수월함이 인식되었다.

  • PDF

Detection performance of MC-CDMA parallel acquisition with reference filter in a multipath fading channel

  • 유영환;강성진;강창언
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.23 no.4
    • /
    • pp.893-900
    • /
    • 1998
  • 본 논문에서는 잡음 예측 필터를 적용한 멀티 캐리어 CDMA 병렬 동기 시스템을 위한 임계치의 통계적인 해석에 중점을 둔다. 시스템 성능 척도로써 평균 동기 획득 시간을 검파 확률과 오보 확률의 관점에서 유도한다. 다중 경로 페이딩 채널에서 평균 동기 획득 시간을 유도한다. 수치해석 결과, 잡음 예측 필터를 적용한 멀티 캐리어 CDMA 병렬 동기 해석에 있어서 임계치의 통계적인 특성을 이용한 동기 해석이 임계치의 근사화에 의한 동기 해석보다 정확한 결과를 보임을 알 수 있다. 또한, 잡음 예측 필터를 적용한 멀티 캐리어 CDMA 별렬 동기 시스템이 넓은 범위의 SNR에 대해서 평균 동기 획득 시간을 최소화할 수 있는 임계치를 검파할 수 있음을 확인할 수 있다.

  • PDF

Uncertainty and Updating of Long-Term Prediction of Prestress in Prestressed Concrete Bridges (프리스트레스트 콘크리트 교량의 프리스트레스 장기 예측의 불확실성 및 업데이팅)

  • 양인환
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.17 no.3
    • /
    • pp.251-259
    • /
    • 2004
  • The prediction accuracy of prestress plays an important role in the quality of maintenance and the decision on rehabilitation of infrastructure such as prestressed concrete bridges. In this paper, the Bayesian statistical method that uses in-situ measurement data for reducing the uncertainties or updating long-term prediction of prestress is presented. For Bayesian analysis, prior probability distribution is developed to represent the uncertainties of creep and shrinkage of concrete and likelihood function is derived and used with data acquired in site. Posterior probability distribution is then obtained by combining prior distribution and likelihood function. The numerical results of this study indicate that more accurate long-term prediction of prestress forces due to creep and shrink age is possible.

A Study on the Method of Combining Empirical Data and Deterministic Model for Fuel Failure Prediction (핵연료 파손 예측을 위한 경험적 자료와 결정론적 모델의 접합 방법)

  • Cho, Byeong-Ho;Yoon, Young-Ku;Chang, Soon-Heung
    • Nuclear Engineering and Technology
    • /
    • v.19 no.4
    • /
    • pp.233-241
    • /
    • 1987
  • Difficulties are encountered when the behavior of complex systems (i.e., fuel failure probability) that have unreliable deterministic models is predicted. For more realistic prediction of the behavior of complex systems with limited observational data, the present study was undertaken to devise an approach of combining predictions from the deterministic model and actual observational data. Predictions by this method of combining are inferred to be of higher reliability than separate predictions made by either model taken independently. A systematic method of hierarchical pattern discovery based on the method developed in the SPEAR was used for systematic search of weighting factors and pattern boundaries for the present method. A sample calculation was performed for prediction of CANDU fuel failures that had occurred due to power ramp during refuelling process. It was demonstrated by this sample calculation that there exists a region of feature space in which fuel failure probability from the PROFIT model nearly agree with that from observational data.

  • PDF