Proceedings of the Korean Institute of Intelligent Systems Conference
/
2004.10a
/
pp.543-546
/
2004
Bishop과 Nabney에 의해 소개된 기존의 혼합 밀도 네트워크(Mixture Density Network)에서는 조건부 확률밀도 함수의 매개변수들(parameters)이 하나의 MLP(multi-layer perceptron)의 출력 벡터로 주어진다. 최근에는 변형된 혼합 밀도 네트워크(Modified Mixture Density Network)라고 하는 이름으로 조건부 확률밀도 함수의 선분포(priors), 조건부 평균(conditional means), 그리고 공분산(covariances) 등이 각각 독립적인 MLP의 출력벡터로 주어지는 경우를 다룬 연구가 보고된 바 있다. 본 논문에서는 조건부 평균이 입력에 관해 선형인 경우를 위한 버전에 대한 이론과 매트랩 프로그램 개발 및 적용을 다룬다. 본 논문에서는 우선 일반적인 혼합 밀도 네트워크에 대해 간단히 설명하고, 혼합 밀도 네트워크의 출력인 다층 퍼셉트론의 매개변수를 각각 다른 다층 퍼셉트론에서 학습시키는 변형된 혼합 밀도 네트워크를 설명한 후, 각각 다른 다층 퍼셉트론을 통해 매개변수를 얻는 것은 동일하나 평균값은 선형함수를 통해 얻는 혼합 밀도 네트워크 버전을 소개한다. 그리고, 모의실험을 통하여 이러한 혼합 밀도 네트워크를의 적용가능성에 대해 알아본다.
Proceedings of the Korea Information Processing Society Conference
/
2004.11a
/
pp.473-476
/
2004
본 논문에서는 프라이버시를 침해 하지 않는 데이터 마이닝에 대해 다룬다. 방대한 데이터에서 유용한 정보를 추출하는 데이터 마이닝분야에서 데이터로부터 프라이버시 보존의 중요성이 부각되고 있다. 그래서 프라이버시의 침해를 막기 위한 방법으로 실제 데이터를 사용하지 않고 잡음이 들어간 데이터를 사용한다. 그리고 프라이버시를 침해하지 않기 위해 잡음이 들어간 데이터로부터 데이터의 확률 밀도 함수(PDF)만을 복원한다. 이렇게 복원된 확률 밀도 함수만을 이용하여 데이터 마이닝기술, 예를 들면 분류화에 곧바로 적용함으로써 프라이버시를 보존하는 것이다. 하지만 분류화에 사용되는 데이터의 1차원적인 확률 밀도 함수만 가지고는 군집화에 사용하기가 부적절하다. 따라서 본 논문에서는 군집화를 하기 위해 잡음이 들어간 데이터로부터 결합 확률 밀도 함수(Joint PDF)를 복원하고, 복원된 결합 확률 밀도 함수만 가지고 군집화를 할 수 있는 방법을 다룬다.
I-V 특성 곡선의 2차 미분을 통해서 얻어지는 전자 에너지 분포 함수를 정확하게 구하기 위해서는 스무딩 과정이 반드시 필요하다. 대표적인 스무딩 방법으로 가우시안 확률 밀도 함수를 instrument함수로 이용하는 가우시안 스무딩이 있다. 본 연구에서는 시스템에 따라서 instrument함수가 다르다는 점에 착안하여, 여러 가지 다른 종류의 확률 밀도 함수를 instrument함수로 사용 스무딩에 적용하여 확률 밀도 함수에 따른 노이즈 제거 및 전자 에너지 분포 함수의 정확도를 비교하였고. 동시에 대표적인 범용 스무딩 방법인 사비츠키-골래이 스무딩, Polynomial fitting과도 그 결과를 비교 분석하였다.
계층형 신경망은 패턴 분류를 위해 사용되어 왔다. 이것은 주어진 교사패턴들의 학습으로 원하는 입력-출력 간의 매핑을 할 수 있기 때문이다. 신경망은 타겟ㅌ트 패턴이 입력 패턴의 카테고리에 일치할 때 타겟트 패턴을 학습하므로서 사후 확률을 근사화할 수 있다. 그리고 입력 공간을 부분 공간으로 나누어 학습 데이터들의 비율로서 만든 타겟트 벡터들로 학습한 신경망은 확률밀도 함수를 나타낼 수 있다. 본 연구에서는 역전파 학습법을 이용한 계층형 NN 과 코드북으로서 사후 확률과 확률밀도함수의 측정방법을 제안하였다. VQ 로 추정한 사후확률고 확률밀도함수를 이용하여 학습이 필요없는 RBF network 의 일종인 PNN으로 모음 인식을 수행 하였다. 인식 실험에서 PNN 의 결과는 역전파 학습법을 이용항 3층 신경망과 VQ 의 평균 인식율과 비교되었다. VQ-PNN의 인식율이 다른 것보다 우수하게 나타났다.
Journal of the Korean Institute of Intelligent Systems
/
v.14
no.7
/
pp.847-851
/
2004
In the original mixture density network(MDN), which was introduced by Bishop and Nabney, the parameters of the conditional probability density function are represented by the output vector of a single multi-layer perceptron. Among the recent modification of the MDNs, there is the so-called modified mixture density network, in which each of the priors, conditional means, and covariances is represented via an independent multi-layer perceptron. In this paper, we consider a further simplification of the modified MDN, in which the conditional means are linear with respect to the input variable together with the development of the MATLAB program for the simplification. In this paper, we first briefly review the original mixture density network, then we also review the modified mixture density network in which independent multi-layer perceptrons play an important role in the learning for the parameters of the conditional probability, and finally present a further modification so that the conditional means are linear in the input. The applicability of the presented method is shown via an illustrative simulation example.
The Journal of Korean Institute of Electromagnetic Engineering and Science
/
v.13
no.8
/
pp.797-803
/
2002
In this paper we derive the probability density function of the phase error of the received signal over Rician fading channel and verify its propriety as the probability density function using the zeroth moment. In general, for the error probability over fading channel we compute the error probability in the first place when it is only AWGN, and then we get the final result by averaging the first result and the probability density function of the corresponding fading channel. In this paper, however, we compute the error probability by double integration after the probability density function over fading channel is computed.
Proceedings of the Korea Society for Industrial Systems Conference
/
1998.10a
/
pp.785-790
/
1998
본 논문은 한국어 숫자를 연속적으로 발음한 음성의 음절 개수 검출에 관한 내용이며 음절의 최소구간 및 스펙트럼 에너지에 대한 확률밀도함수를 이용하여 연속 음성에서 음절갯수검출 알고리듬을 제안, 실험을 통하여 그 유효성을 확인하고자한다. 이를 위하여 음성자료로서는 국어 공학센터(KLE)에서 채록한 4연속 숫자음을 사용하며 음향학적 특징을 분석하기 위하여 확률밀도함수 및 음절의 최소구간 및 단위시간의 확률밀도 함수의 값을 이용하였다. 그 결과 KLE 데이터에서 스펙트럼에너지만 이용한 경우 고립음절을 3.7%이며 본 논문의 알고리듬을 적용한 경우 4음절은 약 60%의 결과가 되며 제안한 방법의 유효성을 확인하였다.
In this paper we present some approximation theorems related to the problem of finding optimal densities with prescribed moments. The implementation of the approximation theorems is to be done in some examples.
The Journal of Korean Institute of Communications and Information Sciences
/
v.38A
no.7
/
pp.552-559
/
2013
In this paper, the multiple-input multiple-output (MIMO) system with a precoder is considered in the transmit-correlated Rayleigh channels. We specifically target the MIMO system employing the minimum mean square error receivers. Based on random matrix theory, we first present a direct and generalized formulation for deriving a probability density function (PDF) of the signal-to-interference-plus-noise ratio (SINR). Then, we derive the accurate closed-form SINR PDFs for a small number of transmit and receive antennas. Based on the SINR PDFs, tight closed-form approximations of the symbol error rate (SER) are derived. Our analysis suggests that the SER approximations can be used to accurately estimate the error probabilities or as a useful tool for the system design.
In this study, we propose this new algorithm that generates score function in ICA(Independent Component Analysis) using entropy theory. To generate score function, estimation of probability density function about original signals are certainly necessary and density function should be differentiated. Therefore, we used kernel density estimation method in order to derive differential equation of score function by original signal. After changing formula to convolution form to increase speed of density estimation, we used FFT algorithm that can calculate convolution faster. Proposed score function generation method reduces the errors, it is density difference of recovered signals and originals signals. In the result of computer simulation, we estimate density function more similar to original signals compared with Extended Infomax and Fixed Point ICA in blind source separation problem and get improved performance at the SNR(Signal to Noise Ratio) between recovered signals and original signal.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.