• Title/Summary/Keyword: 확률문법

Search Result 42, Processing Time 0.027 seconds

Probabilistic Dependency Grammar Induction using Internal Dependency Relation in Words (어절 내부 의존관계를 고려한 확률 의존 문법 학습)

  • Choi, Seon-Hwa;Park, Hyuk-Ro
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2001.10a
    • /
    • pp.507-510
    • /
    • 2001
  • 본 논문에서는 코퍼스를 이용한 확률 의존문법 자동 생성 기술을 다룬다. 특히 의존 문법 생성을 위해 확률 재추정 알고리즘을 의존문법생성에 맞도록 변형하여 학습하였으며 정확한 문법 생성 및 회귀데이터(Data Sparseness)문제 해결을 위해서 구성요소의 대표 지배소들 간의 의존관계 만을 학습했던 기존 연구와는 달리 구성요소 내부의 의존관계까지 학습하는 방법을 제안한다. KAIST 의 트리 부착 코퍼스 31,086 문장에서 추출한 25,000 문장의 Tagged Corpus 을 가지고 한국어 확률 의존 문법 학습을 시도 하였다. 그 결과 초기문법을 10.97% 에서 23.73% 까지 줄인 2,349 개의 정확한 문법을 얻을 수 있었다. 문법의 정확성을 실험 하기 위해 350 개의 실험문장을 Parsing 한 결과 69.61%의 파싱 정확도를 보였다. 이로서 구성요소 내부의 의존관계 학습으로 얻어진 의존문법이 더 정확했으며, 회귀데이터 문제 또한 극복할 수 있음을 알 수 있었다.

  • PDF

A Model of Probabilistic Parsing Automata (확률파싱오토마타 모델)

  • Lee, Gyung-Ok
    • Journal of KIISE
    • /
    • v.44 no.3
    • /
    • pp.239-245
    • /
    • 2017
  • Probabilistic grammar is used in natural language processing, and the parse result of the grammar has to preserve the probability of the original grammar. As for the representative parsing method, LL parsing and LR parsing, the former preserves the probability information of the original grammar, but the latter does not. A characteristic of a probabilistic parsing automaton has been studied; but, currently, the generating model of probabilistic parsing automata has not been known. The paper provides a model of probabilistic parsing automata based on the single state parsing automata. The generated automaton preserves the probability of the original grammar, so it is not necessary to test whether or not the automaton is probabilistic parsing automaton; defining a probability function for the automaton is not required. Additionally, an efficient automaton can be constructed by choosing an appropriate parameter.

Inference of Stochastic Grammars for Head Gesture Recognition (확률적 문법추론에 의한 머리 동작 인식)

  • 조경은;조형제
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2001.06a
    • /
    • pp.457-460
    • /
    • 2001
  • 이 논문은 사람과 컴퓨터간의 편리한 인터페이스를 제공하기 위 사람의 머리 동작을 자동적으로 인식하는 것을 목적으로 8 가지의 기본적인 대리 동작들을 확률적 문법 추론을 이용하여 인식하는 방법을 제안한다. 시스템의 입력 데이터로 쓰여지는 머리의 실세계 3 차원 좌표들을 일정간격으로 양자화한 후, 각각 xy, zy 평면에 투영하고, 이들을 다시 4 방향 코딩하여 확률적 문법 추론법에 적합한 입력형식으로 변환한다. 이에 대해 확률적 문법 추론법을 적용한 결과 대리 동작인식에 대해 효과적으로 이용될 수 있음을 실험결과를 통해 확인하였다.

  • PDF

A Parser of Definitions in Korean Dictionary based on Probabilistic Grammar Rules (확률적 문법규칙에 기반한 국어사전의 뜻풀이말 구문분석기)

  • Lee, Su-Gwang;Ok, Cheol-Yeong
    • Journal of KIISE:Software and Applications
    • /
    • v.28 no.5
    • /
    • pp.48-460
    • /
    • 2001
  • 국어사전의 뜻풀이말은 표제어의 의미를 기술할 뿐만 아니라, 상위/하위개념, 부분-전체개념, 다의어, 동형이의어, 동의어, 반의어, 의미속성 등의 많은 의미정보를 내재하고 있다. 본 연구는 뜻풀이말에서 다양한 의미정보를 획득을 위한 기본적인 도구로서 국어사전의 뜻풀이말 구문분석기를 구현하는 것을 목적으로 한다. 이를 위해서 우선 국어사전의 뜻풀이말을 대상으로 일정한 수준의 품사 및 구문 부착 말 뭉치를 구축하고, 이 말뭉치들로부터 품사 태그 중의성 어절의 빈도 정보와 통계적 방법에 기반한 문법규칙과 확률정보를 자동으로 추출한다. 본 연구의 뜻풀이말 구문분석기는 이를 이용한 확률적 차트파서이다. 품사 태그 중의성 어절의 빈도 정보와 문법규칙 및 확률정보는 파싱 과정의 명사구 중의성을 해소한다. 또한, 파싱 과정에서 생성되는 노드의 수를 줄이고 수행 속도를 높이기 위한 방법으로 문법 Factoring, Best-First 탐색 그리고 Viterbi 탐색의 방법을 이용한다. 문법규칙의 확률과 왼쪽 우선 파싱 그리고 왼쪽 우선 탐색 방법을 사용하여 실험한 결과, 왼쪽 우선 탐색 방식과 문법확률을 혼용하는 방식이 가장 정확한 결과를 보였으며 비학습 문장에 대해 51.74%의 재현률과 87.47%의 정확률을 보였다.

  • PDF

An unsupervised learning of dependency grammar Using inside-outside probability (내부 및 외부 확률을 이용한 의존문법의 비통제 학습)

  • 장두성;최기선
    • Proceedings of the Korean Society for Cognitive Science Conference
    • /
    • 2000.06a
    • /
    • pp.133-137
    • /
    • 2000
  • 구문태그가 부착되지 않은 코퍼스를 사용하여 문법규칙의 확률을 훈련하는 비통제 학습(unsupervised learning) 방법의 대표적인 것이 CNF(Chomsky Normal Form)의 CFG(Context Free Grammar)를 입력으로 하는 inside-outside 알고리즘이다. 본 연구에서는 의존문법을 CNF로 변환하는 기법에 대해 논하고 의존문법을 위해 변형된 inside-outside 알고리즘을 논한다. 또한 이 알고리즘을 사용하여 실제 훈련한 결과를 보이고, 의존규칙과 구문구조 확률을 같이 사용하는 hybrid방식 구문분석기에 적용한 결과를 보인다.

  • PDF

Probabilistic Dependency Grammar Induction (한국어 확률 의존문법 학습)

  • 최선화;박혁로
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.04c
    • /
    • pp.513-515
    • /
    • 2003
  • 본 논문에서는 코퍼스를 이용한 확률 의존문법 자동 생성 기술을 다룬다. 의존문법 생성을 위해 구성성분의 기능어들 간의 의존관계를 학습했던 기존 연구와는 달리. 한국어 구성성분은 내용어와 기능어의 결함 형태로 구성되고 임의 구성성룬 기능어와 임의 구성성분 내용어간의 의존관계가 의미가 있다는 사실을 반영한 의존문법 학습방법을 제안한다. KAIST의 트리 부착 코퍼스 31,086문장에서 추출한 30,600문장의 Tagged Corpus을 가지고 학습한 결과 초기문법을 64%까지 줄인 1.101 개의 의존문법을 획득했고. 실험문장 486문장을 Parsing한 결과 73.81%의 Parsing 정확도를 보였다.

  • PDF

Language Modeling based on Inter-Word Dependency Relation (단어간 의존관계에 기반한 언어모델링)

  • Lee, Seung-Mi;Choi, Key-Sun
    • Annual Conference on Human and Language Technology
    • /
    • 1998.10c
    • /
    • pp.239-246
    • /
    • 1998
  • 확률적 언어모델링은 일련의 단어열에 문장확률값을 적용하는 기법으로서 음성인식, 확률적 기계번역 등의 많은 자연언어처리 응용시스템의 중요한 한 요소이다. 기존의 접근방식으로는 크게 n-gram 기반, 문법 기반의 두가지가 있다. 일반적으로 n-gram 방식은 원거리 의존관계를 잘 표현 할 수 없으며 문법 기반 방식은 광범위한 커버리지의 문법을 습득하는데에 어려움을 가지고 있다. 본 논문에서는 일종의 단순한 의존문법을 기반으로 하는 언어모델링 기법을 제시한다. 의존문법은 단어와 단어 사이의 지배-피지배 관계로 구성되며 본 논문에서 소개되는 의존문법 재추정 알고리즘을 이용하여 원시 코퍼스로부터 자동적으로 학습된다. 실험 결과, 제시된 의존관계기반 모델이 tri-gram, bi-gram 모델보다 실험코퍼스에 대해서 약 11%에서 11.5%의 엔트로피 감소를 보임으로써 성능의 개선이 있었다.

  • PDF

Human Action Recognition by Inference of Stochastic Regular Grammars (확률적 정규 문법 추론법에 의한 사람 몸동작 인식)

  • Cho, Kyung-Eun;Cho, Hyung-Je
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.7 no.3
    • /
    • pp.248-259
    • /
    • 2001
  • This paper proposes a human action recognition scheme to recognize nonverbal human communications automatically. Based on the principle that a human body action can be defined as a combination of multiple articulation movements, we use the method of inferencing stochastic grammars to understand each human actions. We measure and quantize each human action in 3D world-coordinate, and make two sets of 4-chain-code for xy and zy projection plane. Based on the fact that the neighboring information among articulations is an essential element to distinguish actions, we designed a new stochastic inference procedure to apply the neighboring information of hands. Our proposed scheme shows better recognition rate than that of other general stochastic inference procedures. ures.

  • PDF

Korean Probabilistic Dependency Grammar Induction by morpheme (형태소 단위의 한국어 확률 의존문법 학습)

  • Choi, Seon-Hwa;Park, Hyuk-Ro
    • The KIPS Transactions:PartB
    • /
    • v.9B no.6
    • /
    • pp.791-798
    • /
    • 2002
  • In this thesis. we present a new method for inducing a probabilistic dependency grammar (PDG) from text corpus. As words in Korean are composed of a set of more basic morphemes, there exist various dependency relations in a word. So, if the induction process does not take into account of these in-word dependency relations, the accuracy of the resulting grammar nay be poor. In comparison with previous PDG induction methods. the main difference of the proposed method lies in the fact that the method takes into account in-word dependency relations as well as inter-word dependency relations. To access the performance of the proposed method, we conducted an experiment using a manually-tagged corpus of 25,000 sentences which is complied by Korean Advanced Institute of Science and Technology (KAIST). The grammar induction produced 2,349 dependency rules. The parser with these dependency rules shoved 69.77% accuracy in terms of the number of correct dependency relations relative to the total number dependency relations for best-1 parse trees of sample sentences. The result shows that taking into account in-word dependency relations in the course of grammar induction results in a more accurate dependency grammar.

An unsupervised learning of dependency grammar Using inside-outside probability (내부 및 외부 확률을 이용한 의존문법의 비통제 학습)

  • Chang, Du-Seong;Choi, Key-Sun
    • Annual Conference on Human and Language Technology
    • /
    • 2000.10d
    • /
    • pp.133-137
    • /
    • 2000
  • 구문태그가 부착되지 않은 코퍼스를 사용하여 문법규칙의 확률을 훈련하는 비통제 학습(unsupervised learning) 방법의 대표적인 것이 CNF(Chomsky Normal Form)의 CFG(Context Free Grammar)를 입력으로 하는 inside-outside 알고리즘이다. 본 연구에서는 의존문법을 CNF로 변환하는 기법에 대해 논하고 의존문법을 위해 변형된 inside-outside 알고리즘을 논한다. 또한 이 알고리즘을 사용하여 실제 훈련한 결과를 보이고, 의존규칙과 구문구조 확률을 같이 사용하는 hybrid방식 구문분석기에 적용한 결과를 보인다.

  • PDF