Proceedings of the Korea Information Processing Society Conference
/
2001.10a
/
pp.507-510
/
2001
본 논문에서는 코퍼스를 이용한 확률 의존문법 자동 생성 기술을 다룬다. 특히 의존 문법 생성을 위해 확률 재추정 알고리즘을 의존문법생성에 맞도록 변형하여 학습하였으며 정확한 문법 생성 및 회귀데이터(Data Sparseness)문제 해결을 위해서 구성요소의 대표 지배소들 간의 의존관계 만을 학습했던 기존 연구와는 달리 구성요소 내부의 의존관계까지 학습하는 방법을 제안한다. KAIST 의 트리 부착 코퍼스 31,086 문장에서 추출한 25,000 문장의 Tagged Corpus 을 가지고 한국어 확률 의존 문법 학습을 시도 하였다. 그 결과 초기문법을 10.97% 에서 23.73% 까지 줄인 2,349 개의 정확한 문법을 얻을 수 있었다. 문법의 정확성을 실험 하기 위해 350 개의 실험문장을 Parsing 한 결과 69.61%의 파싱 정확도를 보였다. 이로서 구성요소 내부의 의존관계 학습으로 얻어진 의존문법이 더 정확했으며, 회귀데이터 문제 또한 극복할 수 있음을 알 수 있었다.
Probabilistic grammar is used in natural language processing, and the parse result of the grammar has to preserve the probability of the original grammar. As for the representative parsing method, LL parsing and LR parsing, the former preserves the probability information of the original grammar, but the latter does not. A characteristic of a probabilistic parsing automaton has been studied; but, currently, the generating model of probabilistic parsing automata has not been known. The paper provides a model of probabilistic parsing automata based on the single state parsing automata. The generated automaton preserves the probability of the original grammar, so it is not necessary to test whether or not the automaton is probabilistic parsing automaton; defining a probability function for the automaton is not required. Additionally, an efficient automaton can be constructed by choosing an appropriate parameter.
Proceedings of the Korea Multimedia Society Conference
/
2001.06a
/
pp.457-460
/
2001
이 논문은 사람과 컴퓨터간의 편리한 인터페이스를 제공하기 위 사람의 머리 동작을 자동적으로 인식하는 것을 목적으로 8 가지의 기본적인 대리 동작들을 확률적 문법 추론을 이용하여 인식하는 방법을 제안한다. 시스템의 입력 데이터로 쓰여지는 머리의 실세계 3 차원 좌표들을 일정간격으로 양자화한 후, 각각 xy, zy 평면에 투영하고, 이들을 다시 4 방향 코딩하여 확률적 문법 추론법에 적합한 입력형식으로 변환한다. 이에 대해 확률적 문법 추론법을 적용한 결과 대리 동작인식에 대해 효과적으로 이용될 수 있음을 실험결과를 통해 확인하였다.
국어사전의 뜻풀이말은 표제어의 의미를 기술할 뿐만 아니라, 상위/하위개념, 부분-전체개념, 다의어, 동형이의어, 동의어, 반의어, 의미속성 등의 많은 의미정보를 내재하고 있다. 본 연구는 뜻풀이말에서 다양한 의미정보를 획득을 위한 기본적인 도구로서 국어사전의 뜻풀이말 구문분석기를 구현하는 것을 목적으로 한다. 이를 위해서 우선 국어사전의 뜻풀이말을 대상으로 일정한 수준의 품사 및 구문 부착 말 뭉치를 구축하고, 이 말뭉치들로부터 품사 태그 중의성 어절의 빈도 정보와 통계적 방법에 기반한 문법규칙과 확률정보를 자동으로 추출한다. 본 연구의 뜻풀이말 구문분석기는 이를 이용한 확률적 차트파서이다. 품사 태그 중의성 어절의 빈도 정보와 문법규칙 및 확률정보는 파싱 과정의 명사구 중의성을 해소한다. 또한, 파싱 과정에서 생성되는 노드의 수를 줄이고 수행 속도를 높이기 위한 방법으로 문법 Factoring, Best-First 탐색 그리고 Viterbi 탐색의 방법을 이용한다. 문법규칙의 확률과 왼쪽 우선 파싱 그리고 왼쪽 우선 탐색 방법을 사용하여 실험한 결과, 왼쪽 우선 탐색 방식과 문법확률을 혼용하는 방식이 가장 정확한 결과를 보였으며 비학습 문장에 대해 51.74%의 재현률과 87.47%의 정확률을 보였다.
Proceedings of the Korean Society for Cognitive Science Conference
/
2000.06a
/
pp.133-137
/
2000
구문태그가 부착되지 않은 코퍼스를 사용하여 문법규칙의 확률을 훈련하는 비통제 학습(unsupervised learning) 방법의 대표적인 것이 CNF(Chomsky Normal Form)의 CFG(Context Free Grammar)를 입력으로 하는 inside-outside 알고리즘이다. 본 연구에서는 의존문법을 CNF로 변환하는 기법에 대해 논하고 의존문법을 위해 변형된 inside-outside 알고리즘을 논한다. 또한 이 알고리즘을 사용하여 실제 훈련한 결과를 보이고, 의존규칙과 구문구조 확률을 같이 사용하는 hybrid방식 구문분석기에 적용한 결과를 보인다.
Proceedings of the Korean Information Science Society Conference
/
2003.04c
/
pp.513-515
/
2003
본 논문에서는 코퍼스를 이용한 확률 의존문법 자동 생성 기술을 다룬다. 의존문법 생성을 위해 구성성분의 기능어들 간의 의존관계를 학습했던 기존 연구와는 달리. 한국어 구성성분은 내용어와 기능어의 결함 형태로 구성되고 임의 구성성룬 기능어와 임의 구성성분 내용어간의 의존관계가 의미가 있다는 사실을 반영한 의존문법 학습방법을 제안한다. KAIST의 트리 부착 코퍼스 31,086문장에서 추출한 30,600문장의 Tagged Corpus을 가지고 학습한 결과 초기문법을 64%까지 줄인 1.101 개의 의존문법을 획득했고. 실험문장 486문장을 Parsing한 결과 73.81%의 Parsing 정확도를 보였다.
Annual Conference on Human and Language Technology
/
1998.10c
/
pp.239-246
/
1998
확률적 언어모델링은 일련의 단어열에 문장확률값을 적용하는 기법으로서 음성인식, 확률적 기계번역 등의 많은 자연언어처리 응용시스템의 중요한 한 요소이다. 기존의 접근방식으로는 크게 n-gram 기반, 문법 기반의 두가지가 있다. 일반적으로 n-gram 방식은 원거리 의존관계를 잘 표현 할 수 없으며 문법 기반 방식은 광범위한 커버리지의 문법을 습득하는데에 어려움을 가지고 있다. 본 논문에서는 일종의 단순한 의존문법을 기반으로 하는 언어모델링 기법을 제시한다. 의존문법은 단어와 단어 사이의 지배-피지배 관계로 구성되며 본 논문에서 소개되는 의존문법 재추정 알고리즘을 이용하여 원시 코퍼스로부터 자동적으로 학습된다. 실험 결과, 제시된 의존관계기반 모델이 tri-gram, bi-gram 모델보다 실험코퍼스에 대해서 약 11%에서 11.5%의 엔트로피 감소를 보임으로써 성능의 개선이 있었다.
This paper proposes a human action recognition scheme to recognize nonverbal human communications automatically. Based on the principle that a human body action can be defined as a combination of multiple articulation movements, we use the method of inferencing stochastic grammars to understand each human actions. We measure and quantize each human action in 3D world-coordinate, and make two sets of 4-chain-code for xy and zy projection plane. Based on the fact that the neighboring information among articulations is an essential element to distinguish actions, we designed a new stochastic inference procedure to apply the neighboring information of hands. Our proposed scheme shows better recognition rate than that of other general stochastic inference procedures. ures.
In this thesis. we present a new method for inducing a probabilistic dependency grammar (PDG) from text corpus. As words in Korean are composed of a set of more basic morphemes, there exist various dependency relations in a word. So, if the induction process does not take into account of these in-word dependency relations, the accuracy of the resulting grammar nay be poor. In comparison with previous PDG induction methods. the main difference of the proposed method lies in the fact that the method takes into account in-word dependency relations as well as inter-word dependency relations. To access the performance of the proposed method, we conducted an experiment using a manually-tagged corpus of 25,000 sentences which is complied by Korean Advanced Institute of Science and Technology (KAIST). The grammar induction produced 2,349 dependency rules. The parser with these dependency rules shoved 69.77% accuracy in terms of the number of correct dependency relations relative to the total number dependency relations for best-1 parse trees of sample sentences. The result shows that taking into account in-word dependency relations in the course of grammar induction results in a more accurate dependency grammar.
Annual Conference on Human and Language Technology
/
2000.10d
/
pp.133-137
/
2000
구문태그가 부착되지 않은 코퍼스를 사용하여 문법규칙의 확률을 훈련하는 비통제 학습(unsupervised learning) 방법의 대표적인 것이 CNF(Chomsky Normal Form)의 CFG(Context Free Grammar)를 입력으로 하는 inside-outside 알고리즘이다. 본 연구에서는 의존문법을 CNF로 변환하는 기법에 대해 논하고 의존문법을 위해 변형된 inside-outside 알고리즘을 논한다. 또한 이 알고리즘을 사용하여 실제 훈련한 결과를 보이고, 의존규칙과 구문구조 확률을 같이 사용하는 hybrid방식 구문분석기에 적용한 결과를 보인다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.