• Title/Summary/Keyword: 확률론적 인구추계

Search Result 4, Processing Time 0.015 seconds

Stochastic population projections on an uncertainty for the future Korea (미래의 불확실성에 대한 확률론적 인구추계)

  • Oh, Jinho
    • The Korean Journal of Applied Statistics
    • /
    • v.33 no.2
    • /
    • pp.185-201
    • /
    • 2020
  • Scenario population projection reflects the high probability of future realization and ease of statistical interpretation. Statistics Korea (2019) also presents the results of 30 combinations, including special scenarios, as official statistics. However, deterministic population projections provide limited information about future uncertainties with several limitations that are not probabilistic. The deterministic population projections are scenario-based estimates and show a perfect autocorrelation of three factors (birth, death, movement) of population variation over time. Therefore, international organizations UN, the Max Planck Population Research Institute (MPIDR) of Germany and the Vienna Population Research Institute (VID) of Austria have suggested stochastic based population estimates. In addition, some National Statistics Offices have also adopted this method to provide information along with the scenario results. This paper calculates the demographics of Korea based on a probabilistic or stochastic basis and then draws the pros and cons and show implications of the scenario (deterministic) population projections.

Stochastic Demographic and Population Forecasting (확률적 인구추계)

  • Woo, Hae-Bong
    • Korea journal of population studies
    • /
    • v.33 no.1
    • /
    • pp.161-189
    • /
    • 2010
  • Dealing with uncertainty has been a critical issue in demographic and population forecasting since 1980. This study reviews methodological developments in demographic and population forecasting over the last several decades. First, this study reviews the important issue of the uncertainty surrounding demographic forecasts. Several limitations of the traditional scenario approach to dealing with uncertainty are also discussed. Second, in forecasting demographic processes such as mortality, fertility, and migration, three approaches of stochastic forecasting are identified and discussed: expert judgment, statistical modeling, and analysis of historical forecast errors. Finally, this study discusses the current issues and directions for future research in stochastic demographic forecasting.

Current Status and Future Challenges of the National Population Projection in South Korea Concerning Super-Low Fertility Patterns (국제비교를 통해 바라본 한국의 장래인구추계 현황과 전망)

  • Jun, Kwang-Hee;Choi, Seul-Ki
    • Korea journal of population studies
    • /
    • v.33 no.2
    • /
    • pp.85-111
    • /
    • 2010
  • South Korea has experienced a rapid fertility decline and notable mortality improvement. As the drop in TFR was quicker and greater in terms of tempo and magnitude, it cast a new challenge of population projection - how to improve the forecasting accuracy in the country with a super-low fertility pattern. This study begin with the current status of the national population projection as implemented by Statistics Korea by comparing the 2009 interim projection with the 2006 official national population projection. Secondly, this study compare the population projection system including projection agencies, projection horizons, projection intervals, the number of projection scenarios, and the number of assumptions on fertility, mortality and international migration among super-low fertility countries. Thirdly we illustrate a stochastic population projection for Korea by transforming the population rates into one parameter series. Finally we describe the future challenges of the national population projection, and propose the projection scenarios for the 2011 official population projection. To enhance the accuracy, we suggest that Statistics Korea should update population projections more frequently or distinguish them into short-term and long-term projections. Adding more than four projection scenarios including additional types of "low-variant"fertility could show a variety of future changes. We also expect Statistics Korea topay more attention to the determination of a base population that should include both national and non-national populations. Finally we hope that Statistics Korea will find a wise way to incorporate the ideas underlying the system of stochastic population projection as part of the official national population projection.

Stochastic projection on international migration using Coherent functional data model (일관성 함수적 자료모형을 활용한 국제인구이동의 확률적 예측)

  • Kim, Soon-Young;Oh, Jinho
    • The Korean Journal of Applied Statistics
    • /
    • v.32 no.4
    • /
    • pp.517-541
    • /
    • 2019
  • According to the OECD (2015) and UN (2017), Korea was classified as an immigration country. The designation as an immigration country means that net migration will remain positive and international migration is likely to affect population growth. KOSTAT (2011) used a model with more than 15 parameters to divide sexes, immigration and emigration based on the Wilson (2010) model, which takes into account population migration factors. Five years later, we assume the average of domestic net migration rate for the last five years and foreign government policy likely quota. However, both of these results were conservative estimates of international migration and provide different results than those used by the OECD and UN to classify an immigration country. In this paper, we proposed a stochastic projection on international migration using nonparametric model (FDM by Hyndman and Ullah (2007) and Coherent FDM by Hyndman et al. (2013)) that uses a functional data model for the international migration data of Korea from 2000-2017, noting the international migration such as immigration, emigration and net migration is non-linear and not linear. According to the result, immigration rate will be 1.098(male), 1.026(female) in 2018 and 1.228(male), 1.152(female) in 2025 per 1000 population, and the emigration rate will be 0.907(male), 0.879(female) in 2018 and 0.987(male), 0.959(female) in 2025 per 1000 population. Thus the net migration is expected to increase to 0.191(male), 0.148(female) in 2018 and 0.241(male), 0.192(female) in 2025 per 1000 population.