DOI QR코드

DOI QR Code

Stochastic projection on international migration using Coherent functional data model

일관성 함수적 자료모형을 활용한 국제인구이동의 확률적 예측

  • Kim, Soon-Young (Statistical Research Institute) ;
  • Oh, Jinho (School of Basic Sciences, College of Engineering, Hanbat National University)
  • 김순영 (통계청 통계개발원) ;
  • 오진호 (한밭대학교 공과대학 기초과학부)
  • Received : 2019.03.25
  • Accepted : 2019.07.25
  • Published : 2019.08.31

Abstract

According to the OECD (2015) and UN (2017), Korea was classified as an immigration country. The designation as an immigration country means that net migration will remain positive and international migration is likely to affect population growth. KOSTAT (2011) used a model with more than 15 parameters to divide sexes, immigration and emigration based on the Wilson (2010) model, which takes into account population migration factors. Five years later, we assume the average of domestic net migration rate for the last five years and foreign government policy likely quota. However, both of these results were conservative estimates of international migration and provide different results than those used by the OECD and UN to classify an immigration country. In this paper, we proposed a stochastic projection on international migration using nonparametric model (FDM by Hyndman and Ullah (2007) and Coherent FDM by Hyndman et al. (2013)) that uses a functional data model for the international migration data of Korea from 2000-2017, noting the international migration such as immigration, emigration and net migration is non-linear and not linear. According to the result, immigration rate will be 1.098(male), 1.026(female) in 2018 and 1.228(male), 1.152(female) in 2025 per 1000 population, and the emigration rate will be 0.907(male), 0.879(female) in 2018 and 0.987(male), 0.959(female) in 2025 per 1000 population. Thus the net migration is expected to increase to 0.191(male), 0.148(female) in 2018 and 0.241(male), 0.192(female) in 2025 per 1000 population.

OECD (2015)과 UN (2017)에 따르면 한국은 입국의 나라로 분류되고 있다. 입국의 나라는 순이동(net migration)이 양으로 유지된다는 것을 뜻하며, 동시에 국제이동이 인구증가에 영향을 미칠 가능성이 높음을 의미한다. 통계청 (2011)은 이전 추계와는 달리 인구이동요인을 고려한 Wilson (2010)모형을 기반으로 성별 및 입 출국을 구분하여 모수가 15개 이상인 모형을 이용하였다. 그리고 5년 뒤 2016년 추계에서는 최근 5년간의 내국인 순이동률 평균치와 외국인 정부정책을 반영한 값을 가정하였다. 하지만 이 두 결과 모두 국제이동이 보수적으로 추정되어 입국의 나라로 추정하는 OECD, UN의 분류와는 다른 결과를 제공한다. 따라서 본 연구는 입국, 출국 그리고 순이동의 국제이동추이가 선형이 아닌 비선형임을 착안하여 우리나라 2000-2017년 국제이동 자료에 함수적 자료모형을 활용한 비모수 모형 (Hyndman과 Ullah (2007)이 제안한 FDM, Hyndman 등 (2013)가 제안한 Coherent FDM)을 적용하여 확률론적 추계방식으로 향후 추이를 예측하였다. 분석결과 입국률은 2018년 인구천명당 1.098명(남자), 1.026명(여자), 2025년 1.228명(남자), 1.152명(여자) 그리고 출국률은 2018년 인구천명당 0.907명(남자), 0.879명(여자), 2025년 0.987명(남자), 0.959명(여자)으로 나타났다. 따라서 순이동률은 인구천명당 2018년 0.191명(남자), 0.148명(여자), 2025년 0.241명(남자), 0.192명(여자)으로 증가하는 결과가 도출되었다.

Keywords

References

  1. Ahn, O. H., Kim, Y. H., Jeon, M. S., Youn, M. S., and Hwang, Y. Y. (2010). Relationships among Spousal Support, Self-Esteem, and Marital Satisfaction of marriage immigrant women, Journal of the Korean Data Analysis Society, 12, 3137-3452.
  2. Aude, B. and Martin, B. (2015) Smoothing internal migration age profiles for comparative research, Demographic Research, 32, 915-948. https://doi.org/10.4054/DemRes.2015.32.33
  3. Bates, J. and Bracken. I. (1982) Estimation of migration profiles in England and Wales, Environment and Planning A, 14, 889-900. https://doi.org/10.1068/a140889
  4. Box, G. E. P. and Cox, D. R. (1964). An analysis of transformations, Journal of the Royal Statistical Society. Series B (Methodological), 26, 211-252. https://doi.org/10.1111/j.2517-6161.1964.tb00553.x
  5. Choi, K. H. (2004). Population movement analysis within Jeollabuk-Do using statistical methods, Journal of the Korean Data Analysis Society, 6, 861-871.
  6. Congdon, P. (1993). Statistical graduation in local demographic analysis and projection, Journal of the Royal Statistical Society. Series A (Statistics in Society), 156, 237-270. https://doi.org/10.2307/2982731
  7. Hyndman, R. J. (2010). demography: Forecasting mortality, fertility, migration and population data, R package version 1.07. Contribution from Heather Booth and Leonie Tickle and John Maindonald.
  8. Hyndman, R. J., Booth, H., and Yasmeen, F. (2013). Coherent mortality forecasting: the product-ratio method with functional time series models, Demography, 50, 261-283. https://doi.org/10.1007/s13524-012-0145-5
  9. Hyndman, R. J. and Khandakar, Y. (2008). Automatic time series forecasting: the forecast package for R, Journal of Statistical Software, 27, 1-23.
  10. Hyndman, R. J., Koehler, A. B., Ord, J. K., and Snyder, R. D. (2008). Forecasting with Exponential Smoothing: The State Space Approach, Springer, Berlin.
  11. Hyndman, R. J. and Shang, H. L. (2009). Forecasting functional time series (with discussion), Journal of the Korean Statistical Society, 38, 199-221. https://doi.org/10.1016/j.jkss.2009.06.002
  12. Hyndman, R. J. and Ullah, S. (2007). Robust forecasting of mortality and fertility rates: a functional data approach, Computational Statistics & Data Analysis, 51, 4942-4956. https://doi.org/10.1016/j.csda.2006.07.028
  13. Kim, H. S. and Jung, Y. M. (2011). Factors influencing life satisfaction of married immigrant women, Journal of the Korean Data Analysis Society, 13, 2417-2432.
  14. Kim, K. W. and Son, K. J. (2011). A study on developing model and smoothing method for international migration, Journal of the Korean Data Analysis Society, 13, 1821-1735.
  15. Kim, K. W., Yoon, J. Y., and Cha, C. K. (2011). A study on applicability of international migration model in South Korea, Journal of the Korean Data Analysis Society, 13, 233-244.
  16. Koh, T. W. (2007). A detailed study of internal migration based on Census, Journal of the Korean Data Analysis Society, 9, 2335-2347.
  17. KOSTAT (2011). Population Projections (2010-2060).
  18. KOSTAT (2016). Population Projections (2015-2065).
  19. Lee, R. D. and Miller, T. (2001). Evaluating the performance of the Lee-Carter method for forecasting mortality, Demography, 38, 537-549. https://doi.org/10.1353/dem.2001.0036
  20. Moguerza, J. M., Olivares, A., Kostaki, A., and Psarakis, S. (2010). Comparing Smoothing Techniques on Fertility Data. Paper present at the Ninth Mexican International Conference on Artificial Intelligence, 8-13 November 2010.
  21. OECD (2015). International Migration Outlook 2015.
  22. Pagan, A. and Ullah, A. (1999). Nonparametric Econometrics, University Press, Cambridge.
  23. Park, C. K. (2011). The analysis of the family disorganization reasons and its characteristics of international migration migrants in Gyeonggi province, Health and Social Welfare Review, 31, 104-139. https://doi.org/10.15709/hswr.2011.31.3.104
  24. Peristera, P. and Kostaki, A. (2007). Modeling fertility in modern populations, Demographic Research, 16, 141-194. https://doi.org/10.4054/DemRes.2007.16.6
  25. Ramsay, J. O. and Silverman, B. W. (2005). Functional Data Analysis (2nd ed), Springer, New York.
  26. Raymer, J. and Rogers, A. (2008). Applying model migration schedules to represent age-specific migration flows. In: Raymer, J. and Willekens, F. (eds). International Migration in Europe: Data, Models and Estimates. Chichester: Wiley: 175-192.
  27. Rees, P. H. (1979). Migration and Settlement: 1. United Kingdom. Research Report RR-79-3. Laxenburg: international Institute for Applied Systems Analysis.
  28. Rees, P. H., Bell, M., Duke-Williams, O., and Blake, M. (2000). Problems and solutions in the measurement of migration intensities: Australia and Britain compared. Population Studies, 54, 207-222. https://doi.org/10.1080/713779082
  29. Rogers, A. (1988). Age patterns of elderly migration: an international comparison, Demography, 25, 355-370. https://doi.org/10.2307/2061537
  30. Rogers, A. and Castro, L. J. (1981). Model migration schedules. research Report RR-81-30. Laxenburg: international Institute for Applied Systems Analysis.
  31. Rogers, A. and Castro, L. J. (1986). Migration. In: Rogers, A. and Willekens, F.J. (eds). Migration and Settlement: A Multiregional Comparative Study. Dordrecht: Reidel, 157-208.
  32. Rogers, A., Castro, L. J., and Lea, M. (2005). Model migration schedules: three alternative linear parameter estimation methods. Mathematical Population Studies, 12, 17-38. https://doi.org/10.1080/08898480590902145
  33. Rogers, A., Raquillet, R., and Castro, L. J. (1978). Model migration schedules and their applications, Environment and Planning A, 10, 475-502. https://doi.org/10.1068/a100475
  34. Rogers, A. and Rajbhandary, S. (1997). Period and cohort age patterns of US migration, 1948-1993: are American males migrating less?, Population Research and Policy Review, 16, 513-530. https://doi.org/10.1023/A:1005824219973
  35. Rogers, A. andWatkins, J. (1987). General versus elderly interstate migration and population redistribution in the United States, Research on Aging, 9, 483-529. https://doi.org/10.1177/0164027587094002
  36. Seol, D. H. (2006). Optimum Population of Undocumented Foreigners in Korea, Immigration Bureau.
  37. Seol, D. H. (2015). Population Ageing and International Migration Policy in South Korea, Economy and Society, 106, 73-114. https://doi.org/10.18207/criso.2015..106.73
  38. Siegel, J. S. and Swanson, D. (2004). The Methods and Materials of Demography (2nd ed), Academic Press, Boston.
  39. Son, K. J. and Kim, K. W. (2012). Forecasting and evaluating international migration, Journal of the Korean Data Analysis Society, 14, 1899-1910.
  40. Statistics Training Institute (2008). The Basis and Application of Demographics.
  41. Wand, M. P. and Jones, M. C. (1995). Kernel Smoothing, Chapman & Hall/CRC, London.
  42. Wilson, T. (2010). Model migration schedules incorporating student migration peaks, Demographic Research, 13, 191-222. https://doi.org/10.4054/DemRes.2010.23.8
  43. Wood, S. N. (1994). Monotonic smoothing splines fitted by cross validation, SIAM Journal on Scientic Computing, 15, 1126-1133. https://doi.org/10.1137/0915069
  44. UN (1998). Recommendations on statistics of International Migration. Statistical Papers Series M, No. 58, Revision 1.
  45. UN (2017). World Population Prospects 2017.
  46. Zaba, B. (1979). The four-parameter logit life table system, Population Studies, 33, 9-100. https://doi.org/10.1080/00324728.1979.10412778