• Title/Summary/Keyword: 확률론적 성능평가

Search Result 84, Processing Time 0.039 seconds

Advanced Intensity Measures for Probabilistic Seismic Demand Model of Nonstructural Components Considering the Effects of Earthquake (지진에 의한 영향을 고려한 비구조물 확률론적 내진응답모델링을 위한 향상된 지진강도)

  • Hur, Ji-eun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.4
    • /
    • pp.8-14
    • /
    • 2017
  • Nonstructural components, such as electrical equipment, have critical roles in the proper functionality of various infrastructure systems. Some of these devices in certain facilities should operate even under strong seismic shaking. However, it is challenging to define each mechanical and operational failure and determine system failure probabilities under seismic shaking due to the uncertainties in earthquake excitations and the diversity of electrical equipment, among other factors. Therefore, it is necessary to develop effective and practical probabilistic models for performance assessment of electrical equipment considering variations in equipment features and earthquakes. This study will enhance the understanding of the effect of rocking behavior on nonstructural equipment, and linear-to-nonlinear behavior of restrainers. In addition, this study will generate probabilistic seismic demand models of rigid equipment for a set of conventional and novel intensity measures.

Development of hybrid precipitation nowcasting model by using conditional GAN-based model and WRF (GAN 및 물리과정 기반 모델 결합을 통한 Hybrid 강우예측모델 개발)

  • Suyeon Choi;Yeonjoo Kim
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.100-100
    • /
    • 2023
  • 단기 강우 예측에는 주로 물리과정 기반 수치예보모델(NWPs, Numerical Prediction Models) 과 레이더 기반 확률론적 방법이 사용되어 왔으며, 최근에는 머신러닝을 이용한 레이더 기반 강우예측 모델이 단기 강우 예측에 뛰어난 성능을 보이는 것을 확인하여 관련 연구가 활발히 진행되고 있다. 하지만 머신러닝 기반 모델은 예측 선행시간 증가 시 성능이 크게 저하되며, 또한 대기의 물리적 과정을 고려하지 않는 Black-box 모델이라는 한계점이 존재한다. 본 연구에서는 이러한 한계를 극복하기 위해 머신러닝 기반 blending 기법을 통해 물리과정 기반 수치예보모델인 Weather Research and Forecasting (WRF)와 최신 머신러닝 기법 (cGAN, conditional Generative Adversarial Network) 기반 모델을 결합한 Hybrid 강우예측모델을 개발하고자 하였다. cGAN 기반 모델 개발을 위해 1시간 단위 1km 공간해상도의 레이더 반사도, WRF 모델로부터 산출된 기상 자료(온도, 풍속 등), 유역관련 정보(DEM, 토지피복 등)를 입력 자료로 사용하여 모델을 학습하였으며, 모델을 통해 물리 정보 및 머신러닝 기반 강우 예측을 생성하였다. 이렇게 생성된cGAN 기반 모델 결과와 WRF 예측 결과를 결합하는 머신러닝 기반 blending 기법을 통해Hybrid 강우예측 결과를 최종적으로 도출하였다. 본 연구에서는 Hybrid 강우예측 모델의 성능을 평가하기 위해 수도권 및 안동댐 유역에서 발생한 호우 사례를 기반으로 최대 선행시간 6시간까지 모델 예측 결과를 분석하였다. 이를 통해 물리과정 기반 모델과 머신러닝 기반 모델을 결합하는 Hybrid 기법을 적용하여 높은 정확도와 신뢰도를 가지는 고해상도 강수 예측 자료를 생성할 수 있음을 확인하였다.

  • PDF

An Optimal Filter Design for System Identification with GA (GA를 이용한 시스템 동정용 필터계수 최적화)

  • Song, Young-Jun;Kong, Seong-Gon
    • Proceedings of the KIEE Conference
    • /
    • 1999.07g
    • /
    • pp.2833-2835
    • /
    • 1999
  • 이 논문에서는 임의의 시스템 동정에 사용되는 적응필터의 계수를 최적화시키는 방법으로 광범위하게 사용되어지고 있는 기존의 적응 알고리즘인 Least Mean Square(LMS)방법과 최근들어 다양한 최적화 문제에 응용되고 있는 유전자 알고리즘(GA)을 합성한 하이브리드 형태의 적응 알고리즘을 사용한다. 이 알고리즘은 TIR 필터를 설계하는데 있어, 경사하강법의 개념을 사용함으로써 야기되는 지역 수렴문제의 단점을 보완하기 위해, 미분과 같은 결정론적인 규칙없이 단지 확률적인 연산자만으로 진행하는 유전자 알고리즘을 이용한다. 그리고 유전자 알고리즘에 있어서 확률적인 연산을 사용함으로써 발생하는 많은 계산량과 느린 수렴속도 문제를 LMS의 경사하강법을 이용하여 보완한다. 이처럼 유전자 알고리즘이 지닌 장점과 LMS 알고리즘이 갖는 장점을 이용하여 각 알고리즘이 지니는 단점을 서로 보완함으로써 알고리즘의 성능을 향상시키고 이 향상된 알고리즘을 이용하여 최적 필터계수를 찾는다 이렇게 얻은 필터계수값을 이용하여 적응 필터의 성능을 확인 평가한다.

  • PDF

Probabilistic Reliability Analysis of Ultrasonic Inspection System about Sizing Performance of Defects in Piping on Nuclear Power Plant (원전 배관 결함의 크기측정성능에 대한 초음파 검사시스템의 확률론적 신뢰도 평가)

  • 김현묵;정지홍;지용우;장경영;박익근;박윤원
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2002.06a
    • /
    • pp.217-224
    • /
    • 2002
  • The performance demonstration round robin test was conducted to quantify the capability of ultrasonic inspection for in-service and to address some aspects of reliability for nondestructive evaluation. The fifteen inspection teams who employed procedures that met or exceeded ASME Sec. XI code requirements detected the piping of nuclear power plant with various cracks to evaluate the capability of detection. With data from PD-RR test, the performance of ultrasonic nondestructive inspection could be assessed using probability of length and depth sizing of cracks.

  • PDF

Effect of Near- and Far-Fault Earthquakes for Seismic Fragility Curves of PSC Box Girder Bridges (PSC 상자형교의 지진취약도 곡선에 대한 근거리 및 원거리 지진의 영향)

  • Jin, He-Shou;Song, Jong-Keol
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.5
    • /
    • pp.53-64
    • /
    • 2010
  • Seismic fragility curves of structures represent the probability of exceeding the prescribed structural damage state for a given various levels of ground motion intensity, such as peak ground acceleration (PGA). This means that seismic fragility curves are essential to the evaluation of structural seismic performance and assessments of risk. Most of existing studies have not considered the near- and far-fault earthquake effect on the seismic fragility curves. In order to evaluate the effect of near- and far-fault earthquakes, seismic fragility curves for PSC box girder bridges subjected to near- and far-fault earthquakes are calculated and compared. The seismic fragility curves are strongly dependent on the earthquake characteristics such as fault distance. This paper suggests that the effect of near- and far-fault earthquakes on seismic fragility curves of PSC box girder bridge structure should be considered.

A Probabilistic Corrosion Rate Estimation Model for Longitudinal Strength Members of Tanker Structures (유조선 종강도부재의 확률론적 부식속도 예측모델의 개발)

  • Jeom-Kee Paik;Young-Eel Park
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.35 no.2
    • /
    • pp.83-93
    • /
    • 1998
  • The twin aims of the present study are to develop a PC program for the statistical analysis of the measured cohesion data and to suggest a probabilistic corrosion rate estimation model for longitudinal members of tanker structures. A data analysis for the corrosion rate statistics(i.e., mean, standard deviation) as a function of the corrosion parameters is established for various structural member categories/locations of interest. Development of the computer program is focused on possible operation together with future addition of more corrosion data as they become available. To investigate the influence of the corrosion protection scheme a series of the corrosion analysis varying the life of coating are carried out and several different corrosion models as a function of time are suggested depending on the coating life.

  • PDF

Reliability based durability assessment of marine concrete structures (해양 콘크리트 구조물의 신뢰성 기반한 내구성 평가)

  • Song, Ha-Won;Lim, Dong-Woo;Pack, Seung-Woo;Lee, Chang-Hong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.497-500
    • /
    • 2008
  • In order to prevent deterioration of reinforced concrete structures exposed to marine environment, performance based durability design than the design by conventional deemed-to-satisfy rule should be concerned. For example, even though chloride threshold level, which is a major parameter for durability design, is defined as a 1.2 $kg/m^3$ in the Korean concrete specification, it shows that the chloride threshold level leads to over design in its real application so that realistic value should be determined for the performance design. In this paper, not only the probabilistic properties of chloride threshold level obtained from published data are taken into account, but also the experimental results of the probabilistic properties using surface chloride content, diffusion coefficient, cover depth are considered in the assessment utilizing the concept of performance based durability design. In computation, the Monte Carlo Simulation (MCS) is used to perform an assessment due to chloride attack for a target submerged tunnel box. This study found that the specification on current chloride threshold level should be modified for more rational and accurate assessment and design.

  • PDF

A comparison analysis on probable precipitation considering extreme rainfall in Seoul (서울시 폭우특성을 고려한 근미래 확률강우량 산정 및 비교평가)

  • Yoon, Sun Kwon;Choi, Hyeon Seok;Lee, Tae Sam;Jeong, Min Su
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.17-17
    • /
    • 2019
  • IPCC (Intergovernmental Panel on Climate Change) 기후변화 전망보고서에 따르면 RCP 4.5 시나리오 기준, 21세기 전 지구 평균기온은 $2.5^{\circ}C$ 상승(한반도 $+3.0^{\circ}C$)하며, 전 지구 평균강수량은 4.1% 증가(한반도 +16.0%)할 것이라 전망하고 있다(기상청, 2012). 최근 기후변화와 기상이변에 따른 도심지 폭우특성이 변화하고 있음을 많은 연구결과에서 말해주고 있으며, 그 발생 빈도와 강도가 점차 증가하고 있는 추세이다. 특히, 서울시의 경우 인구와 재산이 밀집해 있어 폭우 발생에 의한 시민의 인명과 재산 피해 우려가 크다. 따라서 본 연구에서는 서울시를 대상으로 근미래(~2050년) 기후변화 하에서의 재현기간에 따른 확률강우량 변화 특성을 분석하여 비교 평가한 후 설계 강우량 산정에 활용하고자 하였다. 관측자료 기반 강수량의 변동 특성 분석과 Non-stationary GEV방법을 이용한 비정상성 빈도해석을 수행하였으며, 근미래 폭우특성 변화분석을 위하여 CMIP5 (Coupled Model Intercomparison Project 5)에 참여한 GCMs(General Circulation Models)을 활용한 강우빈도해석을 수행하였다. Mann-Kendall Test와 Quantile Regression을 통한 서울지점 여름철 강수량(June to September)과 기준강수량 초과 강수(30, 50, 80, 100mm/hr), 연간 10th 최대 강수량(Annual Top 10th Precipitation) 등을 분석한 결과 최근 증가 경향이 뚜렷하게 나타났으며, 비정상성 빈도해석에 의한 확률강우량 분석의 가능성과 신뢰성을 확인하였다. 또한 19-GCMs을 통하여 모의된 일(Daily) 단위 강수량자료를 비모수통계적 상세화(Nonparametric Temporal Downscaling) 기법을 적용하여 시간(Hourly) 강우로 다운스케일링하였으며, 서울시 미래 확률강우량에 대한 IDF 곡선(Intensity-Duration-Frequency Curve)을 작성하여 비교?분석한 결과 지속시간 1시간 강우에 대하여 재현기간 30년, 100년 조건에서 확률강우량이 약 4%~11% 수준에서 증가하고 있음을 확인하였다. 본 연구의 결과는 도심지 수공구조물의 설계빈도 영향을 진단하고, 근미래 발생가능한 확률강우량 변화에 따른 시간당 목표 강우량설정의 방법론을 제시하였다는데 의의가 있으며, 서울시의 방재성능목표 설정과 침수취약지역 해소를 위한 기후변화에 따른 수공구조물 설계 시 활용이 가능할 것으로 기대된다.

  • PDF

Development of Prediction Method for Highway Pavement Condition (포장상태 예측방법 개선에 관한 연구)

  • Park, Sang-Wook;Suh, Young-Chan;Chung, Chul-Gi
    • International Journal of Highway Engineering
    • /
    • v.10 no.3
    • /
    • pp.199-208
    • /
    • 2008
  • Prediction the performance of pavement provides proper information to an agency on decision-making process; especially evaluating the pavement performance and prioritizing the work plan. To date, there are a number of approaches to predict the future deterioration of pavements. However, there are some limitation to proper prediction of the pavement service life. In this paper, pavement performance model and pavement condition prediction model are developed in order to improve pavement condition prediction method. The prediction model of pavement condition through the regression analysis of real pavement condition is based on the probability distribution of pavement condition, which set to 5%, 15%, 25% and 50%, by condition of the pavement and traffic volume. The pavement prediction model presented from the behavior of individual pavement condition which are set to 5%, 15%, 25% and 50% of probability distribution. The performance of the prediction model is evaluated from analyzing the average, standard deviation of HPCI, and the percentage of HPCI which is lower than 3.0 of comparable section. In this paper, we will suggest the more rational method to determine the future pavement conditions, including the probabilistic duration and deterministic modeling methods regarding the impact of traffic volume, age, and the type of the pavement.

  • PDF

System Reliability-Based Design Optimization Using Performance Measure Approach (성능치 접근법을 이용한 시스템 신뢰도 기반 최적설계)

  • Kang, Soo-Chang;Koh, Hyun-Moo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.3A
    • /
    • pp.193-200
    • /
    • 2010
  • Structural design requires simultaneously to ensure safety by considering quantitatively uncertainties in the applied loadings, material properties and fabrication error and to maximize economical efficiency. As a solution, system reliability-based design optimization (SRBDO), which takes into consideration both uncertainties and economical efficiency, has been extensively researched and numerous attempts have been done to apply it to structural design. Contrary to conventional deterministic optimization, SRBDO involves the evaluation of component and system probabilistic constraints. However, because of the complicated algorithm for calculating component reliability indices and system reliability, excessive computational time is required when the large-scale finite element analysis is involved in evaluating the probabilistic constraints. Accordingly, an algorithm for SRBDO exhibiting improved stability and efficiency needs to be developed for the large-scale problems. In this study, a more stable and efficient SRBDO based on the performance measure approach (PMA) is developed. PMA shows good performance when it is applied to reliability-based design optimization (RBDO) which has only component probabilistic constraints. However, PMA could not be applied to SRBDO because PMA only calculates the probabilistic performance measure for limit state functions and does not evaluate the reliability indices. In order to overcome these difficulties, the decoupled algorithm is proposed where RBDO based on PMA is sequentially performed with updated target component reliability indices until the calculated system reliability index approaches the target system reliability index. Through a mathematical problem and ten-bar truss problem, the proposed method shows better convergence and efficiency than other approaches.