• Title/Summary/Keyword: 화학적 수소 저장

Search Result 101, Processing Time 0.02 seconds

Effects of Process Variables on the Growth of Dendrite in the Electrochemical Alane(AlH3) Production Process (전기화학적 알레인(AlH3) 제조 공정에서 덴드라이트의 성장에 미치는 공정 변수 영향)

  • KIM, HYOSUB;PARK, HYUNGYU;PARK, CHUSIK;BAE, KIKWANG;KIM, YOUNGHO
    • Journal of Hydrogen and New Energy
    • /
    • v.26 no.6
    • /
    • pp.532-540
    • /
    • 2015
  • Electrochemical alane ($AlH_3$) production process can be provided as a synthesis route which close a reversible cycle. In this study, growth inhibition of dendrite as key issues in this process was investigated. Main cause of dendrite growth was because Al fine powder separated in consumption process of Al electrode was moved to Pd electrode. In an effort to avoid this, use of glass block with uniform holes was the most effective to inhibit the amount of dendrite to that of $AlH_3$. Furthermore, effects of Al electrode (anode) type and electrolyte concentration were investigated and the optimal condition for inhibiting dendrite formation was proposed.

Effect of Heat Treatment of Mg2Ni Thin Film Electrode on the Electrochemical Properties (Mg2Ni 박막 전극의 전기화학적 특성에 미치는 열처리의 효과)

  • Lim, Young-Taek;Ryu, Dong-Hyun;Kim, Ki-Won;Hur, Bo-Young;Ahn, Hyo-Jun
    • Journal of Hydrogen and New Energy
    • /
    • v.13 no.3
    • /
    • pp.190-196
    • /
    • 2002
  • Ni/MH 박막전지의 전극으로 사용될 수 $Mg_{2}Ni$박막을 스퍼터링방법으로 제조하였다. $Mg_{2}Ni$합금박막은 Mg, Ni타?을 이용하여 동시에 스퍼터링함으로서 제조하였다. KOH 액체전해질 및 $Ni(OH)_2$전극을 이용하여 전기화학실험을 하였다. $Mg_2Ni$ 박막의 초기 싸이클 특성에 미치는 열처리 효과를 조사하기 위하여, $200-550^{\circ}C$로 변화시키면서 진공중에서 열처리를 하였다. 열처리온도가 $300^{\circ}C$ 이하에서는 초기방전용량이 증가하였으며, $400^{\circ}C$ 열처리시에는 활성화시의 방전용량이 약 160mAh/g으로 가장 크게 나타났다.

Study on Risk Assessment Method of Hydrogen Station using FAHP-HAZOP (FAHP-HAZOP을 적용한 수소충전소의 위험성평가 방법 연구)

  • Yeong Gwang Jo;Sien Ho Han
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.4
    • /
    • pp.92-101
    • /
    • 2023
  • To solve the problem of climate change, carbon neutrality has now become a necessity rather than an option. Hydrogen is not only a energy storage that can supplement the intermittent production of renewable energy, but is also considered a good alternative in the field of utilization as it does not emit carbon dioxide after reaction. In order to revitalize hydrogen vehicles, one of the fields of hydrogen utilization, the construction of hydrogen station infrastructure must be preceded. Prioritization of risk factors is necessary for efficient operation and risk assessment of hydrogen stations, but due to the short operation period of domestic hydrogen stations, there is a lack of frequency data on accidents and their reliability is low. In this study, we aim to identify the causes and consequences of deviations in hydrogen stations through HAZOP analysis. Additionally, we intend to analyze them using Fuzzy-AHP. Through this, we intend to derive the decision values for the causes of deviations in hydrogen stations and apply them to hydrogen accident cases and risk assessments to confirm the reliability and utility of the data.

Numerical Study on Hydrogen Absorption and Expansion Behavior on Palladium (팔라듐에 관한 수소저장과 팽창거동에 관한 수치해석)

  • Kim, S.W.;Hwang, C.M.;Jang, T.I.;Jung, Y.G.
    • Journal of Hydrogen and New Energy
    • /
    • v.18 no.3
    • /
    • pp.256-264
    • /
    • 2007
  • In order to calculate the relation between the hydrogen and the hydrogen absorption metals in the atomic level, Embedded Atom Method(EAM) is recommended. In this study, we had constructed the EAM programs from constitutive formulas and parameters of the hydrogen and palladium for the purpose of predicting the expansion behavior on hydrogen absorbing in the geometric shape of hydrogen absorption metals, as palladium bars and plates. And the EAM analyses data were compared with the experiment data by using electrochemical method. As results, it is note that the expansion rate in thickness of the palladium plate model by EAM analyses is about 4 times larger than width and length, be similar to experiment results. Also, in the microscopic and macroscopic level the expansion behavior through EAM analyses show good agreement with experiment data.

R&D Trends and Unit Processes of Hydrogen Station (수소 스테이션의 연구개발 동향 및 단위공정 기술)

  • Moon, Dong Ju;Lee, Byoung Gwon
    • Korean Chemical Engineering Research
    • /
    • v.43 no.3
    • /
    • pp.331-343
    • /
    • 2005
  • Development of hydrogen station system is an important technology to commercialize fuel cells and fuel cell powered vehicles. Generally, hydrogen station consists of hydrogen production process including desulfurizer, reformer, water gas shift (WGS) reactor and pressure swing adsorption (PSA) apparatus, and post-treatment process including compressor, storage and distributer. In this review, we investigate the R&D trends and prospects of hydrogen station in domestic and foreign countries for opening the hydrogen economy society. Indeed, the reforming of fossil fuels for hydrogen production will be essential technology until the ultimate process that may be water hydrolysis using renewable energy source such as solar energy, wind force etc, will be commercialized in the future. Hence, we also review the research trends on unit technologies such as the desulfurization, reforming reaction of fossil fuels, water gas shift reaction and hydrogen separation for hydrogen station applications.

Mathematical Modeling of Scheduling Problems for the Fusion Fuel Cycle (핵융합 공정주기에서의 생산 계획 최적화)

  • Lee, Suh-Young;Ha, Jin-Kuk;Lee, In-Beum;Lee, Euy Soo
    • Korean Chemical Engineering Research
    • /
    • v.58 no.4
    • /
    • pp.596-603
    • /
    • 2020
  • In this study, a mathematical model for optimal operation of the fusion fuel cycle is developed based on scheduling approach. The fusion fuel cycle consists of a system for storing and supplying deuterium and tritium, and receiving and separating process after the fusion reaction. Except that tritium is a radioactive material, most of these processes consist of catalytic reactions and separation process. For these reasons, it is possible to apply scheduling approach which is also widely utilized to chemical plants to derive the optimal operating scenarios. The developed model determined the optimal regeneration cycle to minimize the amount of tritium inside the vacuum pumps. Based on the characteristics of various device in the fusion reactor, the optimal tritium plant operation scenario is evaluated. The formulated model was applied to the actual tokamak scenario and utilized to analyze the fuel flow and balance of ITER fuel cycle.

Physicochemical Study of Thermal Treated Serpentine for Carbon Dioxide Sequestration (이산화탄소 포획을 위한 serpentine의 열처리와 물리화학적 특성 변화 연구)

  • Choi, Weon-Kyung;Cho, Tae-Hwan
    • Journal of Hydrogen and New Energy
    • /
    • v.18 no.3
    • /
    • pp.301-308
    • /
    • 2007
  • Silicate mineral serpentine with magnesium and calcium was selected as a mineral carbonation mediators for carbon dioxide storage. Serpentine has various metallic elements as an oxides form of magnesium, iron, calcium, aluminium etc. Magnesium and calcium could be carbonation salt preferentially than other metal component within serpentine. Systemic thermochemical treatment for serpentine could change physicochemical properties like a surface area and pore dimensions. Due to the rapid chemical reaction rate depended on dimensional values, carbonation formation could determined by surface property change of thermochemical treated serpentine.

Membrane-Based Carbon Dioxide Separation Process for Blue Hydrogen Production (블루수소 생산을 위한 이산화탄소 포집용 2단 분리막 공정 최적화 연구)

  • Jin Woo Park;Joonhyub Lee;Soyeon Heo;Jeong-Gu Yeo;Jaehoon Shim;Jinhyuk Yim;Chungseop Lee;Jin Kuk Kim;Jung Hyun Lee
    • Membrane Journal
    • /
    • v.33 no.6
    • /
    • pp.344-351
    • /
    • 2023
  • The membrane separation process for carbon dioxide capture from hydrogen reformer exhaust gas has been developed. Using a commercial membrane module, a multi-stage process was developed to achieve 90% of carbon dioxide purity and 90% of recovery rate for ternary mixed gas. Even if a membrane module with being well-known properties such as material selectivity and permeability, the process performance of purity and recovery widely varies depending on the stage-cut, the pressure at feed and permeate side. In this study, we verify the limits of capture efficiency at single-stage membrane process under various operating conditions and optimized the two-stage recovery process to simultaneously achieve high purity and recovery rate.

Synthesis of Mg2Ni by mechanical alloying and its electrochemical characteristics for Ni-MH secondary battery (Ni-MH 2차 전지용 Mg2Ni의 기계적 합금화법에 의한 제조 및 전기화학적 특성)

  • Moon, Hong-Gi;Choi, Seung-Jun;Kim, Dae-Hwan;Park, Choong-Nyeon
    • Journal of Hydrogen and New Energy
    • /
    • v.10 no.4
    • /
    • pp.225-232
    • /
    • 1999
  • The $Mg_2Ni$ hydrogen storage alloys which have much higher theoretical discharge capacity than $AB_5$ and $AB_2$ type alloys were synthesized by mechanical alloying with some additives and subjected to the electrochemical measurements. Two different processes were employed to the synthesis of $Mg_2Ni$ alloys with using the high energy ball mill SPEX 8000. One was only ball milling, 12 hrs, the Mg and Ni powders for 12 hrs with additives such as $AB_5$, Ni, Co and Cu powders. In the other process the Mg and Ni powders were ball milled for 1 hr first and then heat treated at $300{\sim}400^{\circ}C$ for 1 hr to get $Mg_2Ni$ alloy, and finally the $Mg_2Ni$ alloy powders were ball milled with the additives for 12 hrs. The alloy powders prepared were compacted at room temperature under $7.64tons/cm^2$ into disk type electrodes for the electrochemical measurements. The experimntal results showed that the electrodes prepared with the heat treated alloy powders had a higher discharge capacities than those without heat treatment. The addition of Ni caused an increase of the discharge capacity and the addition of Co improved the cycling characteristics. The electrode prepared by ball milling of $Mg_2Ni$ and 10wt% Ni powders has showed the highest discharge capacity, 546mAh/g.alloy, which was 55% of the theoretical capacity.

  • PDF