• Title/Summary/Keyword: 화학섬유

Search Result 1,131, Processing Time 0.036 seconds

Effects of Fiber Surface Modification on the Flow Characteristics and Wettability in the Resin Transfer Molding Process (섬유의 표면개질이 수지이동 성형공정에서의 유동특성 및 젖음성에 미치는 영향)

  • 김세현;이건웅;이종훈;김성우;이기준
    • The Korean Journal of Rheology
    • /
    • v.11 no.1
    • /
    • pp.34-43
    • /
    • 1999
  • Flow-induced voids during resin impregnation and poor fiber wetting have known to be highly detrimental to the performance of composite parts manufactured by resin transfer molding(RTM) process. In this study, in order to overcome these serious problems encountered in RTM, the effects of surface modification by using silane coupling agent as a surface modifier on the flow characteristics, the wetting between resin and fiber, and void content were investigated. For the experiments of microscopic flow visualization and curing in a beam mold, glass fiber mats having plain weaving structure and epoxy resin were used. Modifying the fiber surface was found to result in a significant decrease of dynamic contact angle between resin and fiber and increase of wicking rate. Therefore, it was confirmed that the surface modification employed in this study could improve the wettability of reinforcing fibers as well as micro flow behavior. In addition, It was revealed that high temperature and low penetration rate of the resin are more favorable processing conditions to reduce the dynamic contact angle. However, surface modified fiber mat was found to have lower permeability than the unmodified one, which may be explained in terms of the decrease of contact time between resin and fiber owing to improvement of wetting. It was also exhibited that surface modification had a significant influence on void formation in RTM process, resulting in a decrease of overall void content due to the improvement of wetting in cured composite parts.

  • PDF

Dyeing Properties of Reactive Disperse Dyes on Nylon, PET, Cotton and Mixture Fabrics (반응성분산염료의 나일론, PET, 면 및 복합소재에 대한 염색성)

  • Lee, Hyo-Young;Kim, Seung-Kwan;Kim, Sung-Dong;Lee, Jong-Lyel
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2011.03a
    • /
    • pp.34-34
    • /
    • 2011
  • PET/면, 나일론/PET, 나일론/면 등 다양한 복합섬유소재를 염색하기 위해서는 복합섬유소재를 구성하는 각각의 섬유소재에 따라 적합한 염료를 선정하고 그에 맞는 염색방법을 사용하여 진행되고 있다. 하지만 이런 경우 색상과 견뢰도 등의 물성을 맞추기 위한 복잡한 염색공정 및 긴 염색시간에 의한 생산비용 상승 등 여러 문제점이 있다. 이러한 문제점을 해결하기 위해 하나의 염료를 이용하여 다양한 섬유를 염색하는 방법에 대한 많은 연구가 이루어지고 있다. 새로운 염료합성의 경우 섬유와 결합할 수 있는 반응기를 분산염료구조에 도입하여 염색조건에 따라 다양한 섬유를 염색할 수 있는 universal dye의 개발에 초점이 맞추어져 있다. 반응성염료와 분산염료의 특성을 동시에 만족시키기 위한 일환으로서 염료의 분자 구조 내에 상기의 염료특성을 동시에 발휘하는 소위 "반응성 분산염료"의 개발이 이에 속한다. 본 연구의 목적은 화학구조가 다른 네 종류의 sulphatoethylsulphone기를 갖는 반응성분산염료들을 합성하고 이들의 나일론, PET, 면 및 교직물에 대한 염색성을 분석하는 것이다. 면 섬유에 대한 Dye 1~4의 염색온도에 따른 염색성을 살펴보면, 각 염료들의 염색성은 염색온도에 따라 큰 영향을 받고 있음을 알 수 있으며, Dye 1, 4는 염색온도가 높을수록 K/S 값이 증가하고 Dye 2, 3은 염색온도가 낮을수록 K/S 값이 증가함을 알 수 있다. Nylon에 대한 Dye 1의 염색속도는 pH 4 > pH 5 > pH 8 > pH 7 > pH 6의 순서로 나타나 pH 6에서의 염착 평형이 pH 4보다 40분 정도 늦게 도달하였다. 나일론과 PET의 동욕염색에 있어 Dye 1은 나일론의 경우 초기부터 빠른 흡착을 보이며 $100^{\circ}C$가 되는 60분에는 K/S값이 16에 도달하여 염착 평형에 근접한 것을 알 수 있으며, PET는 $100-200^{\circ}C$ 사이에서 염색속도가 빨라지며 본격적으로 흡수하였다. N/C 교직물에 대한 Dye 2, 3의 빌드업성은 두 염료 모두 염료농도의 증가에 따라 K/S 값 역시 선형적으로 증가하는 것으로 나타났다. 나일론 섬유는 네 가지 염료로 우수하게 염색되었고, 면 섬유는 수용성기를 가진 Dye 2와 3, 그리고 PET 섬유는 소수성이 높은 Dye 1과 4가 적합하였다. N/P 및 N/C 교직물의 염색에 있어 나일론 성분으로 염료가 더 많이 흡착하여 나일론섬유가 더 진하게 염색되지만 교직물의 직물조직에 의하여 표면과 이면은 각각 거의 동색으로 보였다.

  • PDF

Improvement method for viscosity measurement of high viscosity paper and fabric cultural heritages (고점도 지류 및 섬유 문화재의 점도 측정 개선 방법 연구)

  • Kim, Young-Hee;Hong, Jin-Young;Jo, Chang-Wook;Kim, Soo Ji;Lee, Jeung-Min;Seo, Min Seok;Choi, Kyoung Hwa
    • 보존과학연구
    • /
    • s.34
    • /
    • pp.20-29
    • /
    • 2013
  • Paper, textile and wood materials are mainly consisted of cellulose. Cellulose is high molecule and make up the strong crystalline structure by hydrogen bonds. In particular, the polymerization degree of cellulose are closely related to the strength of fiber, and the permanence. the useful life of fiber, also depends on the degradation of this substance. The viscosity of cellulose is considered to be an important indicator of fiber damage in high molecule polymers. The viscosity measurements with CED solution is used to measure the molecular weight and the degree of polymerization of cellulose. Cellulose viscosity of wood fibers is measured with TAPPI standard method T230. However, TAPPI standard method T230 is difficult to completely dissolving the cellulose of high molecular weight and large degree of polymerization, such as Korea traditional papers and fabrics made with mulberry, ramie, cotton fibers. In this study, The high viscosity of hanji and fabric was measured with TAPPI standard method T254. T254 method is that the cellulose specimen with the proper amount of weaker (0.167M CED) solution, and completely dissolved with the stronger (1.0M CED) solution. It was found that cellulose with high degree of polymerization was dissolved more easily in general CED method.

  • PDF

Preparation and Heating Characteristics of N-doped Graphite Fiber as a Heating Element (질소가 도핑 된 흑연섬유 발열체의 제조 및 발열특성)

  • Kim, Min-Ji;Lee, Kyeong Min;Lee, Sangmin;Yeo, Sang Young;Choi, Suk Soon;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.28 no.1
    • /
    • pp.80-86
    • /
    • 2017
  • In this study, nitrogen functional groups were introduced on graphite fiber (GF) to modify their electrical properties, and heating properties were investigated according to the treatment conditions. GF was prepared by a thermal solid-state reaction at $200^{\circ}C$ for 2 h. Surface properties of the nitrogen doped GF were examined by XPS, and its resistance and heating temperature were measured using a programmable electrometer and thermo-graphic camera, respectively. The XPS result showed that the nitrogen functional groups on the GF surface were increased with increasing of urea contents, and the heating property of the GF was also improved as nitrogen functional groups were introduced. The maximum heating temperature of GF treated by urea was $53.8^{\circ}C$ at 60 V, which showed 55% improved heating characteristics compared to that of non-treated GF. We ascribe this effect to introduced nitrogen functional groups on the GF surface by thermal solid-state reaction, which significantly affects the heating characteristics of GF.

Physical and Chemical Characteristics of Flesh and Pomace of Japanese Apricots (Prunus mume Sieb. et Zucc) (매실과육과 매실착즙박의 이화학적 특성)

  • Kang, Min-Young;Jeong, Yoon-Hwa;Eun, Jong-Bang
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.6
    • /
    • pp.1434-1439
    • /
    • 1999
  • The chemical characteristics of flesh and pomace of Japanese apricot were investigated. The moisture contents of flesh and pomace of Japanese apricot were 89.94% and 91.39%. Free sugars and sugar-derivatives of Japanese apricot flesh (JAF), were 0.77% glucose, 0.47% fructose, 0.35% mannitol and 0.47% sorbitol, and of Japanese apricot pomace (JAP) were 0.01% glucose, 0.09% fructose, 0.38% mannitol and 0.06% sorbitol, respectively. The organic acids of flesh and pomace of Japanese apricot were citric acid, malic acid and oxalic acid. The predominant minerals in flesh and pomace of Japanese apricot were K, P, Ca and Al. The contents of dietary fiber (DF) in JAF were 2.94% of insoluble dietary fiber (IDF), 1.07% of soluble dietary fiber (SDF) and 4.01% of total dietary fiber (TDF). IDF of JAP were 6.25%, SDF 0.51% and TDF, 6.76%.

  • PDF

Construction of Antibacterial Electrospun Nanofiber from Poly(styrene-co-sulfadiazine) via Electrospinning (폴리(스티렌-설파디아진) 공중합체를 이용한 항균 나노섬유 제조)

  • Hwang, Seok-Ho;Ahn, Kyung-Hwan;Cha, Heechul;Kim, Jeong-Yeol;Hwang, Hong-Gu;Huh, Wansoo;Lee, Sangwon
    • Applied Chemistry for Engineering
    • /
    • v.20 no.4
    • /
    • pp.386-390
    • /
    • 2009
  • In this study, sulfadiazine acrylamide monomer was synthesized by the reaction of sulfadiazine, known as an antibiotic substance, with acryloyl chloride. The monomer was characterized by $^1H-NMR$, and $^{13}C-NMR$. Using the synthesized sulfadiazine acrylamide monomer and styrene monomer, a copolymer, poly(styrene-co-sulfadiazine), was obtained by the free radical copolymerization and characterized by $^1H-NMR$, GPC, DSC and TGA. The copolymer nanofibers web has been successfully prepared by electrospinning technique under DMF solution. The diameter of the nanofibers was in the range between 500 and 800 nm. Antibacterial activity of the nanofiber web was evaluated utilizing the colony counting method against Staphylococcus aureus and Escherichia coli.

Optical Properties of Plastic Fiber Made from a Transparent Polymethylmethacrylate (투명한 PMMA 로 된 플라스틱 섬유의 광학적 성질)

  • Hee-Ju Chae;Yasuhiro Koike
    • Journal of the Korean Chemical Society
    • /
    • v.33 no.4
    • /
    • pp.431-435
    • /
    • 1989
  • The refractive index, refractive-index distribution, birefringence, and the attenuation of the plastic fiber prepared from the transparent PMMA prerod were measured in accordance with continuous heat drawing temperature($T_d$). The refractive indices were decreased with $T_d$ elevation but the refractive-index distribution from the center of fiber to periphery was higher at lower $T_d$. The steep decrease of gradient index was only at the periphery of higher $T_d$. Birefringence was observed only below $220^{\circ}C$ and ranged $5{\times}10^{-4}$ to $6{\times}10^{-4}$. No birefringence was observed above $220^{\circ}C$. An elevation of $T_d$ brought about a monotonous decrease in the attenuation of the fiber.

  • PDF

Graft Copolymerization to Proteins (I). Cerium (IV) Ion-Initiated Graft Copolymerization of Vinyl Monomers to Silk Fibroins (단백질에 대한 그라프트 공중합 (제1보). Cerium (IV) 이온에 의한 비닐 단위체의 견섬유에 대한 그라프트 공중합)

  • Iwhan Cho;Kwang-Duk Ahn
    • Journal of the Korean Chemical Society
    • /
    • v.20 no.4
    • /
    • pp.299-308
    • /
    • 1976
  • Cerium (Ⅳ) ion-initiated graft copolymerizations of acrylamide and of acrylonitirile to silk fibroins were investigated. When acrylamide was used, the change in ceric ammonium nitrate concentration exhibited a maximum in degree of grafting at 0.01 M. Also observed was that the change in acetic acid content in reaction media gave a maximum in degree of grafting at 7% acetic acid in water. Degree of grafting was increased generally with increase in acrylamide concentration reaction time and reaction temperature. When acrylonitrile monomer was used for grafting,different results were obtained. Addition of nitric acid was more effective in enhancing the degree of grafting than the addition of acetic acid.Generally the grafting of acrylonitrile to silk fibroins was less efficient than the grafting of acrylamide. The portion of grafted silk fibroins insoluble in Lowe's reagent exhibited the IR absorption bands characteristics to both vinyl polymers and silk fibroins, indicating the grafting of vinyl monomers to silk fibroins. To examine the molecular weight of graft vinyl polymer, a sample of grafted silk was hydrolyzed by 10% sodium hydroxide. Viscosity measurements indicated that the molecular weight of the graft polymer was in the range of 105.

  • PDF

Preparation and Characterization of High Performance Activated Carbon Fibers from Stabilized PAN fibers (PAN계 안정화섬유로부터 고기능성 활성탄소섬유의 제조 및 특성)

  • 임연수;유기상;문숙영;정윤중;김명수;함현식
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.5
    • /
    • pp.468-474
    • /
    • 2003
  • Activated carbon fibers were prepared from stabilized PAN fibers by physical and chemical activation to compare their characteristics. In this study, stabilized PAN fibers were activated by physical activation with steam and CO$_2$, and by chemical activation with KOH. The fabricated activated carbon fibers were evaluated and compared such as specific surface area, pore size distribution, pore volume, and amount of iodine adsorption. In the steam activation, a specific surface area of 1635 m$^2$/g was obtained after heat treatment at 990$^{\circ}C$. Otherwise, in the CO$_2$ activation, produced activated carbon fibers had been a specific surface area of 671 m$^2$/g after heat treatment at 990$^{\circ}C$. In chemical activation using KOH, a specific surface area of 3179 m$^2$/g was obtained with a KOH/ stabilized PAN fiber ratio of 1.5 : 1 at 900$^{\circ}C$. Nitrogen adsorption isotherms for fabricated activated carbon fibers showed type I and transformation from type I and II in the Brunauer-Deming-Deming-Teller (B.D.D.T) classification. Increasing specific surface area Increased the amount of iodine adsorption in both activation methods. Because the ionic radius of iodine was smaller than the interior micropore size of activated carbon fibers.

Effect of Clamping Pressure on Surface Properties of Gas Diffusion Layer in PEFCs (체결압이 고분자연료전지 기체확산층의 표면성질에 미치는 영향)

  • Ahn, Eun-Jin;Park, Gu-Gon;Yoon, Young-Gi;Park, Jin-Soo;Lee, Won-Yong;Kim, Chang-Soo
    • Journal of the Korean Electrochemical Society
    • /
    • v.10 no.4
    • /
    • pp.306-310
    • /
    • 2007
  • Characteristics of GDL (Gas Diffusion Layer) mainly determine the gas diffusion and water removal in a cell, thereby changing the performance and affecting durability of PEFC. To optimize the water management and understand the two phase flow in a GDL, it is important to study the behaviors of GDL micro structure under the real operating condition. In the clamped condition of cell, the GDL beneath the rib is more compressed than beneath the channel. Many researches on physical, electrochemical, mechanical behaviors of gas diffusion layer has been conducted. However, changes in surface properties under clamped condition have rarely studied. In present study, the morphology of broken connections of carbon fibers and detachment of PTFE coatings on the fibers were shown from the microscopic observations. In addition, changes in wetting properties of GDL by compression were investigated by using XPS and liquid uptake methods. The hydrophobic characteristics of GDL surface beneath the rib of the flow field plate are changed due to the deformation of micro structure.