• Title/Summary/Keyword: 화학물질 배출량

Search Result 153, Processing Time 0.028 seconds

Rhizoremdiation of Petroleum Hydrocarbon-contaminated Soils and Greenhouse Gas Emission Characteristics: A Review (유류오염토양 근권정화기술 동향 및 온실가스 배출 특성)

  • Seo, Yoonjoo;Cho, Kyung-Suk
    • Microbiology and Biotechnology Letters
    • /
    • v.48 no.2
    • /
    • pp.99-112
    • /
    • 2020
  • Rhizoremediation, based on the ecological synergism between plant and rhizosphere microorganisms, is an environmentally friendly method for the remediation of petroleum hydrocarbon-contaminated soils. In order to mitigate global climate change, it is necessary to minimize greenhouse gas emissions while cleaning-up contaminated soils. In rhizoremediation, the main factors affecting pollutant remediation efficiency and greenhouse gas emissions include not only pollutant and soil physicochemical properties, but also plant-microbe interactions, microbial activity, and addition of amendments. This review summarizes the development in rhizoremediation technology for purifying oil-contaminated soils. In addition, the key parameters and strategies required for rhizoremediation to mitigate climate change mediation are discussed.

Estimation of air pollutant emissions from heavy industry sector in North Korea (북한의 중공업 부문 대기오염물질 배출량 추정)

  • Lee, Young Won;Kim, Yong Pyo;Yeo, Min Ju
    • Particle and aerosol research
    • /
    • v.17 no.4
    • /
    • pp.133-148
    • /
    • 2021
  • This study aims to estimate the amount of air pollutants emitted from heavy industry facilities in North Korea. To compare the emission in 2017 from the heavy industry sector in North Korea with South Korea, the heavy industry sector was classified with the South Korean classification (Matching Heavy Industry sector) and air pollutant emissions by Matching Heavy Industry sector in North Korea were estimated. The CO, NOx and SOx emissions of Matching Heavy Industry sector in North Korea are 22%, 73%, and 31% of the emission in South Korea, respectively. The air pollutant emissions in the Matching Heavy Industry sector in North Korea for CO, NOx and SOx were 0.6%, 124%, and 24% of the total air pollutant emission in North Korea estimated from EDGAR, respectively. As for the distribution of emissions by administrative district of the Matching Heavy Industry sector in North Korea, NOx was concentrated in the western part of North Korea, and CO and SOx emissions were concentrated in Hamgyong-bukto.

A Study on the Removal Characteristics of VOCs Using the Hybrid Technique of E-beam and Adsorbent (전자빔과 흡착제의 Hybrid 기술을 이용한 휘발성유기화합물 제거특성 연구)

  • 김조천;김기준;한범수;이재형;선우영;임용재
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2003.11a
    • /
    • pp.67-68
    • /
    • 2003
  • 휘발성 유기화합물(Volatile Organic Compounds; VOCs)은 용제를 사용하는 도장공정, 석유화학공정 등 각종 산업공정과 자동차로부터 배출되어 대기중에 광화학 산화물을 형성하거나 그 자체로 발암성 또는 악취성을 나타내는 물질로서 인체에 유해한 영향을 미친다. VOCs 물질의 전자빔 처리공정의 경우 상온에서 운영되어 에너지의 소모량이 적고, 2차오염물 발생이 매우 적으며 다양한 종류의 VOCs에 적용이 가능하므로 기존 방지시설의 보완 및 대체시설로서는 최적인 것으로 평가되고 있다. (중략)

  • PDF

Si@C/rGO Composite Anode Material for Lithium Ion Batteries (리튬 이온 전지용 음극으로서의 Si@C/rGO의 합성)

  • Chaehyun Kim;Sung Hoon Kim;Wook Ahn
    • Journal of the Korean Electrochemical Society
    • /
    • v.27 no.2
    • /
    • pp.73-79
    • /
    • 2024
  • As the use of fossil fuels has gradually increased, so has the emission of greenhouse gases such as carbon dioxide, leading to environmental problems. As a result, lithium-ion batteries (LiB) have emerged as the solution to this issue. To manufacture medium to large-sized lithium-ion batteries (LiB), it requires electrodes with high capacity and fast charging capabilities. Silicon (Si) is considered a next-generation anode with high-capacity properties, so, reduced graphene oxide (rGO) was compounded with Si@resorcinol-formaldehyde resin (RF) composite to prevent the volume expansion of Si. It was confirmed that the composite anode prepared exhibited improved capacity and enhanced stability.

Various Technologies for Simultaneous Removal of NOx and SO2 from Flue Gas (배출가스의 질소산화물과 이산화황 동시 저감 기술)

  • Park, Hyun-Woo;Uhm, Sunghyun
    • Applied Chemistry for Engineering
    • /
    • v.28 no.6
    • /
    • pp.607-618
    • /
    • 2017
  • Harmful air pollutants are exhausted from the various industrial facilities including the coal-fired thermal power plants and these substances affects on the human health as well as the nature environment. In particular, nitrogen oxides ($NO_x$) and sulfur dioxide ($SO_2$) are known to be causative substances to form fine particles ($PM_{2.5}$), which are also deleterious to human health. The integrated system composed of selective catalytic reduction (SCR) and wet flue gas desulfurization (WFGD) have been widely applied in order to control $NO_x$ and $SO_2$ emissions, resulting in high investment and operational costs, maintenance problems, and technical limitations. Recently, new technologies for the simultaneous removal of $NO_x$ and $SO_2$ from the flue gas, such as absorption, advanced oxidation processes (AOPs), non-thermal plasma (NTP), and electron beam (EB), are investigated in order to replace current integrated systems. The proposed technologies are based on the oxidation of $NO_x$ and $SO_2$ to $HNO_3$ and $H_2SO_4$ by using strong aqueous oxidants or oxidative radicals, the absorption of $HNO_3$ and $H_2SO_4$ into water at the gas-liquid interface, and the neutralization with additive reagents. In this paper, we summarize the technical improvements of each simultaneous abatement processes and the future prospect of technologies for demonstrating large-scaled applications.

A Study on the Utilization of Industrial Solid Organic Wastes (I). The Physical and Chemical Characteristics of Industrial Solid Wastes with Regard to Fertilizer Value and Humus Sources (산업 고형유기폐물의 자원화에 관한 연구 (제1보) 산업 고형유기폐물의 비료와 Humus 원으로서의 물리적 및 화학적 특성에 관하여)

  • Park Nae Joung;Kim, Yong In
    • Journal of the Korean Chemical Society
    • /
    • v.19 no.4
    • /
    • pp.258-268
    • /
    • 1975
  • The physical and chemical characteristics of solid organic wastes from paper and pulp industries, tanneries, and food processing industries were studied with regard to fertilizer value as well as humus sources as a rational method of waste utilization. The pulp and paper mill wastes containing low mineral nutrients but high lignin may be utilized for soil amendments through humus preparation. Chemical treatment sludges of tannery wast water contained appreciable fertilizer nutrients andiliming materials, but utilization as fertilizers or soil amendments depends on the pollution effect of high chromium content, which has not been well understood. Food processing wastes may be utilized as organic fertilizers or micronutrient sources for plant. Some wastes containing high water-soluble sugars or lower C/N ratio than 20 may be utilized as additives for rapid humus preparation.

  • PDF

Environmental impact on water quality from paddy fields treated liquid manure (액비시용에 따른 논 포장에서의 수질환경 영향)

  • Jang, Taeil;Son, Jae Jwon;Choi, Jin Kyu
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.276-276
    • /
    • 2015
  • 농경지에서의 액비 수요는 최근 증가하고 있으나 적정 액비시비량에 대한 기준과 사후 관리에 대한 명확한 기준이 없어 환경문제에 대한 고찰이 필요하다. 본 연구에서는 시험포장을 선정하고 논에서의 질소 및 인의 동태를 모니터링하고, 관개수, 배출수 및 침투수 중 영양물질 및 중금속 잔류 특성을 분석하였다. 시험구는 대조구(화학비료 표준시비구, A)와 양돈분뇨액비 표준시비처리구(B)로 구성하였으며, 기상관측 측정을 위하여 자동기상관측기, 유입량은 수도미터계량기로 관측하였으며, 시험포장으로부터 유출량을 측정하기 위하여 압력식수위계를 각 처리구별로 설치하였다. 침투에 의한 영양물질의 유출부하량 평가를 위하여 침투계 1조 및 중금속 포집이 가능한 ceramic porus cup 4조를 각 처리구별로 설치하였다. 2014년 6월 9일 써래질 후, 6월 19일 $15{\times}30cm$, 1주 당 3본씩 "동진벼"를 기계이앙 실시하였고, 대조구 A는 농촌진흥청의 추천시비량, 처리구 B는 지상분무방식(액비시비 후 경운을 하는 방식 및 관개수 공급 후 액비를 시비하는 희석식)을 적용하였다. 기비 시비일은 6월 6일, 분얼비 시비일은 6월 26일, 수비 시비일은 7월 30일이었다. 강우량 대비 유출량 비인 유출률은 0.03에서 0.91까지 나타났으며, 담수의 수질조사는 평시 조사로 주 1회 실시하고 있으며, 분석결과는 SS의 경우 처리구 B가 상대적으로 높게 나타났다. 영양물질(T-N, T-P 등)의 경우는 대조구 A에서 꾸준히 높은 농도를 보여주고 있으며 이들 농도는 시비 시기에 따라 첨두값이 다르게 나타났다. 특히 $TH_3-N$의 경우 휘발성이 강하기 때문에 처리구 B에서 매우 낮은 값을 보여주었다. 유출수의 화학성분 분석결과는 완효성인 화학비료의 특징으로 전체적으로 대조구 A에서 수질농도가 높게 나타났으며, BOD의 경우는 처리구 B에서 높게 나타났다. 침투수의 T-N은 대조구 A에서 상대적으로 높은 값을 보여주고 있으며 이는 $TH_3-N$의 휘발에 영향을 받는 것으로 보이며, $NO_3-N$은 처리구 B에서 더 높게 나타나 토양중으로 침출되는 양이 많은 것으로 나타났다. 본 연구는 액비시용에 따른 농경지 위해성 평가와 관리방안 개발을 위한 1차년도의 연구 성과로서 지속적인 모니터링을 통하여, 향후 새만금 유역내 축산밀집지역에서 나타날 수 있는 축산분뇨 관리정책 개발의 기초자료로 활용될 것으로 기대한다.

  • PDF

Nitrogen, Phosphorus, and Organic Carbon Discharges in the Imgo Small Agricultural Watershed Catchment (임고천상류 소규모 농업유역에서 하천으로의 질소, 인 및 유기물의 부하)

  • Chung, Jong-Bae;Kim, Min-Kyeong;Kim, Bok-Jin;Park, Woo-Churl
    • Korean Journal of Environmental Agriculture
    • /
    • v.18 no.1
    • /
    • pp.70-76
    • /
    • 1999
  • Since high concentrations of N, P, and organic C cause the excessive eutrophication in water systems, the control of nutrient export from agricultural nonpoint sources has become important. This study was conducted to estimate discharges of N, P, and organic C from a small agricultural watershed of the upper Imgo stream in Youngchun, Kyongbuk. Of the total area(1.420ha), 25% was agricultural land including paddy, upland and orchards and most of the remainder was forest. The resident population in the watershed was 194 in 80 households and relatively small numbers of livestocks including cow were raised. Mean concentrations of nutrients in the stream water were 4.95, 0.80, 6.72, 0.07 and 2.52mg/L for $NO_3-N$, $NH_4-N$, Total N, Total P and COD respectively. Annual discharges in 1997 were 28,991kg of $NO_3-N$. 3,010kg of $NH_4-N$, 37,006kg of Total N. 590kg of Total P, and 29,138kg of COD. There was a strong positive relationship between stream flow and precipitation, and also most of the nutrient discharges occurred in the rainy season (May to August). Since there was no any other industries in the watershed, agricultural practices and sewage from the resident households, forest runoff and livestock wastes were the major sources of NPS discharges. A combination of management options, including management of soil erosion and fertilizer application, could lead to reductions in nutrient exports.

  • PDF

LCA on Lettuce Cropping System by Top-down Method in Protected Cultivation (시설상추 생산체계에 대한 top-down 방식 전과정평가)

  • Ryu, Jong-Hee;Kim, Kye-Hoon;So, Kyu-Ho;Lee, Gil-Zae;Kim, Gun-Yeob;Lee, Deog-Bae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.6
    • /
    • pp.1185-1194
    • /
    • 2011
  • This study was carried out to estimate carbon emission using LCA (Life Cycle Assessment) and to establish LCI (Life Cycle inventory) DB for lettuce production system in protected cultivation. The results of data collection for establishing LCI DB showed that the amount of fertilizer input for 1 kg lettuce production was the highest. The amounts of organic and chemical fertilizer input for 1 kg lettuce production were 7.85E-01 kg and 4.42E-02 kg, respectively. Both inputs of fertilizer and energy accounted for the largest share. The amount of field emission for $CO_2$, $CH_4$ and $N_2O$ for 1 kg lettuce production was 3.23E-02 kg. The result of LCI analysis focused on GHG (Greenhouse gas) showed that the emission value to produce 1 kg of lettuce was 8.65E-01 kg $CO_2$. The emission values of $CH_4$ and $N_2O$ to produce 1 kg of lettuce were 8.59E-03 kg $CH_4$ and 2.90E-04 kg $N_2O$, respectively. Fertilizer production process contributed most to GHG emission. Whereas, the amount of emitted nitrous oxide was the most during lettuce cropping stage due to nitrogen fertilization. When GHG was calculated in $CO_2$-equivalents, the carbon footprint from GHG was 1.14E-+00 kg $CO_2$-eq. $kg^{-1}$. Here, $CO_2$ accounted for 76% of the total GHG emissions from lettuce production system. Methane and nitrous oxide held 16%, 8% of it, respectively. The results of LCIA (Life Cycle Impact assessment) showed that GWP (Global Warming Potential) and POCP (Photochemical Ozon Creation Potential) were 1.14E+00 kg $CO_2$-eq. $kg^{-1}$ and 9.45E-05 kg $C_2H_4$-eq. $kg^{-1}$, respectively. Fertilizer production is the greatest contributor to the environmental impact, followed by energy production and agricultural material production.

A Study on the Spatiotemporal Characteristics of Chemical Discharges and Quantified Hazard-Based Result Scores Using Pollutant Release and Transfer Register Data (화학물질배출이동량 자료를 활용한 화학물질배출량 및 유해기반지수 정량화와 시공간 특성 연구)

  • Lim, Yu-Ra;Gan, Sun-Yeong;Bae, Hyun-Joo
    • Journal of Environmental Health Sciences
    • /
    • v.48 no.5
    • /
    • pp.272-281
    • /
    • 2022
  • Background: The constant consumption of chemical products owing to expanding industrialization has led to an increase in public interest in chemical substances. As the production and disposal processes for these chemical products cause environmental problems, regional information on the hazard level of chemical substances is required considering their effects on humans and in order to ensure environmental safety. Objectives: This study aimed to identify hazard contribution and spatiotemporal characteristics by region and chemical by calculating a hazard-based result score using pollutant release and transfer register (PRTR) data. Methods: This study calculated the chemical discharge and hazard-based result score from the Risk-Screening Environmental Indicators (RSEI) model, analyzed their spatiotemporal patterns, and identified hotspot areas where chemical discharges and high hazard-based scores were concentrated. The amount of chemical discharge and hazard-based risk scores for 250 cities and counties across South Korea were calculated using PRTR data from 2011 to 2018. Results: The chemical discharge (high densities in Incheon, Daegu, and Busan) and hazard-based result scores (high densities in Incheon, Chungcheongnam-do, and some areas of Gyeongsangnam-do Province) showed varying spatial patterns. The chemical discharge (A, B) and hazard-based result score (C, D) hotspots were identified. Additionally, identification of the hazard-based result scores revealed differences in the type of chemicals contributing to the discharge. Ethylbenzene accounted for ≥80% of the discharged chemicals in the discharge hotspots, while chromium accounted for >90% of the discharged chemicals in the hazard-based result score hotspots. Conclusions: The RSEI hazard-based result score is a quantitative indicator that considers the degree of impact on human health as a toxicity-weighted value. It can be used for the management of industries discharging chemical substances as well as local environmental health management.