• Title/Summary/Keyword: 화재/가스경보 시스템

Search Result 18, Processing Time 0.023 seconds

IoT-based Smart Tunnel Accident Alert System (사물 인터넷 기반의 스마트 터널 사고 경보 시스템)

  • Ki-Ung Min;Seong-Noh Lee;Yoon-Hwa Choi;Yeon-Taek Hong;Chul-Sun Lee;Yun-Seok Ko
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.4
    • /
    • pp.753-762
    • /
    • 2024
  • Tunnels have limited evacuation areas, and It is difficult for cars coming from behind to recognize the accident situation in front. Since an accident is very likely to lead to a serious secondary accident, a IoT-based smart tunnel accident warning system was studied to prepare for traffic accidents that occur in tunnels. If the measured values from the flame detection sensor, gas detection sensor, and shock detection sensor in the tunnel exceed the standard, it is judged to be an emergency situation and an alert system is designed to operate. The accident information message was designed to be displayed on the LCD and transmitted to drivers inside and outside the tunnel through a Wi-Fi communication network. A performance test system was established and performance evaluation was performed for several accident scenarios. As a result of the test, it was confirmed that the accident alert system can accurately detect accidents based on given reference values, perform alert procedures, and transmit alert messages to smart phones through Wi-Fi wireless communication. And through this, its effectiveness could be confirmed.

IoT Platform System for Electric Fire Prediction and Prevention (전기화재 예측 및 예방을 위한 IoT 플랫폼 시스템)

  • Yang, Seungeui;Lee, Sungock;Jung, Hoekyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.2
    • /
    • pp.223-229
    • /
    • 2022
  • During the winter season, when the weather gets colder every year, electricity consumption increases rapidly. The occurrence of fires is increasing due to a short circuit in electrical facilities of buildings such as markets, bathrooms, and apartments with high population density while using a lot of electricity. The cause of these short circuit fires is mostly due to the aging of the wires, the usage increases, and the excessive load cannot be endured, and the wire sheath is melted and caused by nearby ignition materials. In this paper, the load and overheat generated in the electric wire are measured through a complex sensor composed of an overload sensor, a VoC sensor, and an overheat sensor. Based on this, big data analysis is carried out to develop a platform capable of predicting, alerting, and blocking electric fires in real time, and a simulator capable of simulated fire experiments.

Development and Field Test of a Smart-home Gas Safety Management System (스마트 홈 가스안전관리 시스템 개발 및 현장시험)

  • Park, Gyou-Tae;Kim, Eun-Jung;Kim, In-Chan;Kim, Hie-Sik
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.6
    • /
    • pp.128-135
    • /
    • 2012
  • In this paper, we proposed a system and a scenario to raise efficiency of gas safety management by developing wireless ZigBee communication modules, smart-home gas safety appliances and the system suitable for gas safety. Our designed system consists of a micom gas meter, an automatic extinguisher, sensors, and a wall-pad. A micom-gas-meter monitors gas flow, gas pressure, and earthquake. An automatic fire extinguisher checks combustible gas leaks and temperature of $100^{\circ}C$(cut off) and $130^{\circ}C$(fire). Sensors measure smoke and CO gas. In our novel system, a micom-gas meter cut off inner valve with warnings, an automatic fire extinguisher cut off middle valve and spray extinguishing materials, and sensors generate signals when detecting smoke and CO and then take a next action. Gas safety appliances and sensors automatically takes measures, and transmit those information to a wall-pad. The wall-pad again transmits real time information to server. Users can check and manage gas safety situations by connecting BcN server through web or mobile application. We hereby devised scenarios for gas safety and risk management based on the smart, and demonstrated their efficiency through test applied to filed.

Development of Sensor Module and Control System Software for LPG/CNG Stations (LPG/CNG용 센서 모듈 및 관제시스템 S/W 개발)

  • Cho, Beomsek;Kim, Sungkwang;Kim, Sungtae;Kim, Jongmin
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.1
    • /
    • pp.53-59
    • /
    • 2018
  • In Korea, The number of installed LPG Charging stations is about 2000, increasing by 26 every year. In these, about 500 charging stations are older above 15 year, accounting about 25% of total stations. About 86% of them are located in the city, which is causing serious damage if accident occurs. In this paper, we developed a duel gas sensor module and integrated control system software that can prevent and correspondence to gas leaks and fire accidents at LPG/CNG charging stations. The dual type sensor module has the function of collecting and transmitting the measured data to the sensors of methane, butane and hydrogen through RF433Mhz communication. In addition, each sensor is attached with two to improve stability and accuracy. The integrated control system software detects real-time data of the devices measured by the sensors and it send to the PC and smart phone of manager. Therefore, if accident occurs, the manager can check the status of the charging station regardless of time and place.

Development of IoT Sensor-Gateway-Server Platform for Electric Fire Prediction and Prevention (전기화재 예측 및 예방을 위한 IoT 센서-게이트웨이-서버 플랫폼 개발)

  • Yang, Seung-Eui;Kim, Hankil;Song, Hyun-ok;Jung, Heokyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.255-257
    • /
    • 2021
  • During the winter season, when electricity usage increases rapidly every year, fires are frequent due to short circuits in aging electrical facilities in multi-use facilities such as traditional markets and jjimjilbangs, apartments, and multi-family houses. Most of the causes of such fires are caused by excessive loads applied to aging wires, causing the wire covering to melt and being transferred to surrounding ignition materials. In this study, we implement a system that measures the overload and overheating of the wire through a composite sensor, detects the toxic gas generated there, and logs it to the server through the gateway. Based on this, we will develop a platform that can predict, alarm and block electric fires in real time through big data analysis, and a simulator that can simulate fire occurrence experiments.

  • PDF

Smart Home Control System using Bluetooth and Wi-Fi (블루투스와 와이파이를 이용한 스마트홈 제어 시스템)

  • Yeo, Sang-Sam;Lee, Won-Ho;Park, Seong-Yong;Park, Geon-Hui;Jo, Da-Hye;Koo, Jun-yeong
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2020.07a
    • /
    • pp.663-664
    • /
    • 2020
  • 안전함과 편리함을 추구하는 현대 사회에서 사람들은 각종 스마트기기에 가까워져 있다. 휴식을 취하는 가정에서도 역시 사람들은 스마트폰과 각종 웨어러블 기기가 일상이 되었고, 가전제품 또한 사물 인터넷화되며 사람들의 편의성에 보탬이 된다. 본 논문에서는 다가오는 4차산업혁명인 사물인터넷에 다가가는 주제를 선정하였고, 사람들이 가정에서 휴식을 취할 때 온습도, 미세먼지 농도를 사용자 지정 값에 의하여 자동 환기하여 쾌적한 환경 조성에 도움을 준다. 모든 측정값은 가정 내에서 블루투스 통신을 통해 결과를 표시하도록 하였다. 그리고 부하의 전원과도 연결하여 손쉽게 전원제어 역시 원격으로 가능하도록 구현하였다. 또한, 외출 시 가스 누출 사고와 화재 발생을 와이파이 통신 환경을 통해 원격으로 앱에 경보를 제시하고 누출된 측정값을 도식하면서 큰 2차 피해로 이어지기 전에 초동조치가 가능하도록 설계하였다. 사용자의 편의와 안전성을 주제로, 사람들에게 유익한 기능을 제공하고 앞으로의 4차산업혁명인 사물인터넷과의 연계 역시 기대할 수 있다.

  • PDF

Performance Evaluation of Advance Warning System for Transporting Hazardous Materials (위험물 운송을 위한 조기경보시스뎀 성능평가)

  • Oh Sei-Chang;Cho Yong-Sung
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.4 no.1 s.6
    • /
    • pp.15-29
    • /
    • 2005
  • Truck Shipment Safety Information, which is a part of the development of NERIS is divided into Optimal Route Guidance System and Emergency Response System. This research is for establishing an advance warning system, which aims for preventing damages(fire, explosion, gas-escape etc.) and detecting incidents that are able to happen during transporting hazardous materials in advance through monitoring the position of moving vehicles and the state of hazardous materials in real-time. This research is peformed to confirm the practical possibility of application of the advance warning system that monitors whether the hazardous materials transport vehicles move the allowed routes, finds the time and the location of incidents of the vehicles promptly and develops the emergency system that is able to respond to the incidents as well by using the technologies of CPS, CDMA and CIS with testing the ability of performance. As the results of the test, communication accuracies are 99$\%$ in freeway, 96$\%$ in arterial, 97$\%$ in hilly sections, 99$\%$ in normal sections, 96$\%$ in local sections, 99$\%$ in urban sections and 98$\%$ in tunnels. According to those results, the system has been recorded a high success rate of communication that enough to apply to the real site. However, the weak point appeared through the testing is that the system has a limitation of communication that is caused in the rural areas and certain areas where are fewer antennas that make communication possible between on-board unit and management server. Consequently, for the practical use of this system, it is essential to develop the exclusive en-board unit for the vehicles and find the method that supplements the receiving limitation of the GPS coordinates inside tunnels. Additionally, this system can be used to regulate illegal acts automatically such as illegal negligence of hazardous materials. And the system can be applied to the study about an application scheme as a guideline for transporting hazardous materials because there is no certain management system and act of toxic substances in Korea.

  • PDF

Appropriate Smart Factory : Demonstration of Applicability to Industrial Safety (적정 스마트공장: 산업안전 기술로의 적용 가능성 실증)

  • Kwon, Kui-Kam;Jeong, Woo-Kyun;Kim, Hyungjung;Quan, Ying-Jun;Kim, Younggyun;Lee, Hyunsu;Park, Suyoung;Park, Sae-Jin;Hong, SungJin;Yun, Won-Jae;Jung, Guyeop;Lee, Gyu Wha;Ahn, Sung-Hoon
    • Journal of Appropriate Technology
    • /
    • v.7 no.2
    • /
    • pp.196-205
    • /
    • 2021
  • As industrial safety increases, various industrial accident prevention technologies using smart factory technology are being studied. However, small and medium enterprises (SMEs), which account for the majority of industrial accidents, are having difficulties in preventing industrial accidents by applying these smart factory technologies due to practical problems. In this study, customized monitoring and warning systems for each type of industrial accident were developed and applied to the actual field. Through this, we demonstrated industrial accident prevention technology through appropriate smart factory technology used by SMEs. A customized monitoring system using vision, current, temperature, and gas sensors was established for the four major disaster types: worker body access, short circuit and overcurrent, fire and burns due to high temperature, and emission of hazardous gas. In addition, a notification method suitable for each work environment was applied so that the monitored risk factors could be recognized quickly, and real-time data transmission and display enabled workers and managers to understand the disaster risk effectively. Through the application and demonstration of these appropriate smart factory technologies, the spread of these industrial safety technologies is to be discussed.