DOI QR코드

DOI QR Code

IoT-based Smart Tunnel Accident Alert System

사물 인터넷 기반의 스마트 터널 사고 경보 시스템

  • 민기웅 (남서울대학교 전자공학과) ;
  • 이성노 (남서울대학교 전자공학과) ;
  • 최윤화 (남서울대학교 전자공학과) ;
  • 홍연택 (남서울대학교 전자공학과) ;
  • 이철선 ((주)원진건설산업) ;
  • 고윤석 (남서울대학교 전자공학과)
  • Received : 2024.06.18
  • Accepted : 2024.07.25
  • Published : 2024.08.31

Abstract

Tunnels have limited evacuation areas, and It is difficult for cars coming from behind to recognize the accident situation in front. Since an accident is very likely to lead to a serious secondary accident, a IoT-based smart tunnel accident warning system was studied to prepare for traffic accidents that occur in tunnels. If the measured values from the flame detection sensor, gas detection sensor, and shock detection sensor in the tunnel exceed the standard, it is judged to be an emergency situation and an alert system is designed to operate. The accident information message was designed to be displayed on the LCD and transmitted to drivers inside and outside the tunnel through a Wi-Fi communication network. A performance test system was established and performance evaluation was performed for several accident scenarios. As a result of the test, it was confirmed that the accident alert system can accurately detect accidents based on given reference values, perform alert procedures, and transmit alert messages to smart phones through Wi-Fi wireless communication. And through this, its effectiveness could be confirmed.

터널은 대피 장소가 한정적이며 후방 진입 차량들이 전방 사고 상황을 인식하기 어렵기 때문에 터널 교통 사고 시 2차 사고로 이어질 가능성이 매우 높다. 본 논문에서는 터널 교통 사고 시 파급 효과를 경감하기 위한 사물 인터넷 기반의 스마트 터널 사고 경보 시스템에 대해 연구하였다. 터널 내의 불꽃 감지 센서, 가스 감지 센서와 충격 감지 센서를 활용하여 측정 값이 기준을 초과하면, 비상 상항으로 판단하여 경보 시스템이 작동하도록 설계하였다. 사고가 감지되면 사고 안내 메시지가 LCD를 통해 표시되고, 와이파이 통신 망을 통해 터널 내외 운전자들에게 전송되도록 설계하였다. 하나의 성능 시험 시스템을 구축하였고 수개의 사고 시나리오들에 대해 성능 평가를 수행하였다. 성능 시험 결과, 스마트 사고 경보 시스템이 주어진 기준 값을 기준으로 정확하게 사고를 감지, 경보 절차를 수행하고 와이파이 무선 통신을 통해 경보 메시지를 스마트 폰에 성공적으로 전송함으로써 그 유효성을 확인할 수 있었다.

Keywords

References

  1. J. Kim and Y. Jung, "Analysis of Highway Tunnel Accident Severity Considering Secondary Collision Variables: Partial Proportional Odds Model (PPM) Application," Journal of the Korean Society of Transportation, vol. 83, 2020, pp. 174-179.
  2. Y. Son and G. Park, "A Study on the Traffic Accident Characteristics of the Highway Hazardous Section(Tunnel Section), Journal of the Korean Society of Transportation, vol. 81, 2019, pp. 265-266.
  3. B. Park, C. Roh, and B. Moon, "Adequacy Analysis of Tunnel Management System in terms of Operational Safety," J. Korea Inst. Intell. Transp. Syst, vol. 14, no. 5, 2015, pp. 1-12. https://doi.org/10.12815/kits.2015.14.5.001
  4. K. Lee and H. Shin, "An Application of a Deep Learning Algorithm for Automatic Detection of Unexpected Accidents Under Bad CCTV Monitoring Conditions in Tunnels," 2019 International Conference on Deep Learning and Machine Learning in Emerging Applications (Deep-ML), Istanbul, Turkey, 2019, pp. 7-11. doi: 10.1109/Deep-ML.2019.00010
  5. L. Yan and S. Ko, "In-tunnel Accident Detection System based on the Learning of Accident Sound," The Open Transportation Journal, vol. 15, no. 1, May 2021, pp. 81-92. doi: 10.2174/1874447802115010081
  6. L. Yan, and S. Ko, "In-tunnel Accident Detection System based on the Learning of Accident Sound, "The Open Transportation Journal, vol. 15, research article TOTJ-15-81, May 2021, pp. 81-92. doi: 10.2174/1874447802115010081
  7. G. Jeon, T. Kim, H. Lee, and J. Jang, "Dynamic Traffic Information Provision and Dismissal Strategy for Before and After Traffic Incident," J. of the Korea Institute of Electronic Communication Sciences, vol. 16, no. 5, Oct. 2021, pp. 867-878. https://doi.org/10.13067/JKIECS.2021.16.5.867.
  8. J. Kim, C. Yang, and S. Park, "A Study on the Research Trends for Tunnel Traffic Safety using Text Mining," Journal of Digital Contents Society, vol. 23, no. 10, 2022, pp. 2075-2083. https://doi.org/10.9728/dcs.2022.23.10.2075
  9. W. Liu, M. Yan, and Z. Zhang, Hydraulic and Civil Engineering Technology VIII: Characteristics of Tunnel Explosion Accident and Its Emergency Disposal Process. Wuhan: IOS Press, 2023. doi: 10.3233/ATDE230835.
  10. J. Kim, X. Zhang, Y. Jiang, and X. Wu, " AIoT-enable Digital Twin System for Smart Tunnel Fire Safety Management," Science Direct, article no. 100381, Apr. 2024, pp. 1-17. https://doi.org/ 10.1016/j.dibe.2024.100381
  11. D. Lee and J. Lim, "Design of Compact Data Integration and Convergence Device Using Esp8266 Module," J. of the Korea Convergence Society, vol. 8, no. 2, Feb. 2017, pp. 15-20. https://doi.org/10.15207/JKCS.2017.8.2.015
  12. Y. Cho, M. Moon, and S. C. Hoi, "A Study on the Marathon Program Production using LTE Network," Journal of Satellite, Information and Communication, vol. 12, no. 2, June 2017, pp. 15-20.
  13. L. Cho, Y. Jeong, S. Min, C. Yoon, and K. Jeong, "Design of a TCP/IP Protocol Processor for Home-Networking," Journal of the Korean Telecommunications Association's academic conference, Suwon, Korea, 2002, pp. 1,301-1,304.
  14. W. Jin, J. Youn, M. Choi, J. Lee, B. Ohgan, and Y. Ko, "Communication Methodology Between Digital FRTUs Based on Wi-Fi Communication for the Smart Grid of Distribution System Area," J. of the Korea Institute of Electronic Communication Sciences, vol. 17, no. 6, 2022, pp. 1113-1120. https://doi.org/10.13067/JKIECS.2022.17.6.1113.
  15. J. Lee, E. Bae, W. Ki, C. Kim, and S. Ihm, "HTTP Communication Method and Key Features," Proceedings of the 24th Korea Conference on Software Engineering (KCSE 2022), Pyungchang, Korea,
  16. B. Jung, and G. Seok, "2.4/5GHz Dual-Band RF Design and Implementation and Performance Evaluation, " J. of the Korea Institute of Electronic Communication Sciences, vol. 18, no. 5, Oct. 2023 pp. 755-760. https://doi.org/10.13067/JKIECS.2023.18.5.755.
  17. B. Kim, "Revision and Implementation of App Inventor Open Source", J. of the Korea Institute of Information and Communication Engineering, vol. 22, no. 2, 2018, pp. 221-226. https://doi.org/10.6109/JKIICE.2018.22.2.221
  18. T. Munasinghe, E. W. Patton, and O. Seneviratne, "IoT Application Development Using MIT App Inventor to Collect and Analyze Sensor Data," 2019 IEEE International Conference on Big Data (Big Data), Los Angeles, CA, USA, 2019, pp. 6157-6159. doi: 10.1109/BigData47090.2019.9006203.
  19. M. Kaddipujar, J. Rajan, and B. D. Kumbar, "Mobile Application Development Using MIT App Inventor: An Experiment at Raman Research Institute Library," Bulletin of the American Astronomical Society(AAS), vol. 54, no. 2, Apr. 2022. doi:10.3847/25c2cfeb.d68a2a42.