• Title/Summary/Keyword: 화자 검출

Search Result 112, Processing Time 0.027 seconds

A Study for Complexity Improvement of Automatic Speaker Verification in PDA Environment (PDA 환경에서 자동화자 확인의 계산량 개선을 위한 연구)

  • Seo, Chang-Woo;Lim, Young-Hwan;Jeon, Sung-Chae;Jang, Nam-Young
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.10 no.3
    • /
    • pp.170-175
    • /
    • 2009
  • In this paper, we propose real time automatic speaker verification (ASV) system to protect personal information on personal digital assistant (PDA) device. Recently, the capacity of PDA has extended and been popular, especially for mobile environment such as mobile commerce (M-commerce). However, there still exist lots of difficulties for practical application of ASV utility to PDA device because it requires too much computational complexity. To solve this problem, we apply the method to relieve the computational burden by performing the preprocessing such as spectral subtraction and speech detection during the speech utterance. Also by applying the hidden Markov model (HMM) optimal state alignment and the sequential probability ratio test (SPRT), we can get much faster processing results. The whole system implementation is simple and compact enough to fit well with PDA device's limited memory and low CPU speed.

  • PDF

A Development of Wireless Sensor Networks for Collaborative Sensor Fusion Based Speaker Gender Classification (협동 센서 융합 기반 화자 성별 분류를 위한 무선 센서네트워크 개발)

  • Kwon, Ho-Min
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.12 no.2
    • /
    • pp.113-118
    • /
    • 2011
  • In this paper, we develop a speaker gender classification technique using collaborative sensor fusion for use in a wireless sensor network. The distributed sensor nodes remove the unwanted input data using the BER(Band Energy Ration) based voice activity detection, process only the relevant data, and transmit the hard labeled decisions to the fusion center where a global decision fusion is carried out. This takes advantages of power consumption and network resource management. The Bayesian sensor fusion and the global weighting decision fusion methods are proposed to achieve the gender classification. As the number of the sensor nodes varies, the Bayesian sensor fusion yields the best classification accuracy using the optimal operating points of the ROC(Receiver Operating Characteristic) curves_ For the weights used in the global decision fusion, the BER and MCL(Mutual Confidence Level) are employed to effectively combined at the fusion center. The simulation results show that as the number of the sensor nodes increases, the classification accuracy was even more improved in the low SNR(Signal to Noise Ration) condition.

Nasal Consonants Recognition Based on the Perceptual Representation (지각적 표현에 기초한 비음 인식에 관한 연구)

  • Kim, Ki-Chul;Cho, Jung-Wan
    • Annual Conference on Human and Language Technology
    • /
    • 1989.10a
    • /
    • pp.120-125
    • /
    • 1989
  • 음성 신호에는 언어정보이외에 여러 요인에 의한 정보가 포함되어 있어서, 문자와 일대일로 대응되는 분절을 정확하게 검출하기가 어렵다. 본 연구에서는 선형 예측계수 (LPC) 스펙트럼의 첨두 부분을 강조한 이진 (binary) 스펙트럼을 제안하고, 이를 바탕으로 음의 안정영역과 천이영역을 통합하여 음향특징을 추출하고자 한다. 각 영역의 특징은 이진 스펙트럼을 누적하여 구하며, 통합적인 특징은 각 영역의 특징을 결합한 관계적 특징으로 나타낸다. 제 2 차 포르만트 주파수의 궤적을 관계적 특징으로 하여, 양순 비음과 치조 비음을 구별한 결과, 모음의 문맥과 화자에 비교적 독립적인 인식결과를 얻을 수 있었다. 또한 이진 스펙트럼이 원래의 스펙트럼에 포함된 정보를 유지하는지 검토하기 위해, 같은 거리척도 (distance measure) 에 의해 인식 실험한 결과 이진 스펙트럼의 성능이 오히려 우수하게 나타났으며, 관계적 이진 스펙트럼의 경우 화자에 따른 변화가 더욱 적었다. 음성에 백색 잡음 (Gaussian white noise)을 더하여 잡음음성 (noisy speech) 을 만든 뒤, 같은 방법으로 실험한 결과도 유사한 인식결과를 얻을 수 있어 제안된 이진 스펙트럼의 유효성을 확인하였다.

  • PDF

Driver Verification System Using Biometrical GMM Supervector Kernel (생체기반 GMM Supervector Kernel을 이용한 운전자검증 기술)

  • Kim, Hyoung-Gook
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.9 no.3
    • /
    • pp.67-72
    • /
    • 2010
  • This paper presents biometrical driver verification system in car experiment through analysis of speech, and face information. We have used Mel-scale Frequency Cesptral Coefficients (MFCCs) for speaker verification using speech information. For face verification, face region is detected by AdaBoost algorithm and dimension-reduced feature vector is extracted by using principal component analysis only from face region. In this paper, we apply the extracted speech- and face feature vectors to an SVM kernel with Gaussian Mixture Models(GMM) supervector. The experimental results of the proposed approach show a clear improvement compared to a simple GMM or SVM approach.

Applying an Auxiliary Filter in the Adaptive Echo Canceller for Performance Improvement of Double-Talk Detection (음향반향제거기에서 동시통화 검출 성능 개선을 위한 보조필터 적용)

  • Kim Siho;Bae Keunsung
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.1
    • /
    • pp.65-70
    • /
    • 2005
  • This paper deals with the problem of double-talk (DT) detection in anacoustic echo canceller (AEC). In the DT detection algorithm with correlation coefficient, detection errors occasionally occur because it is hard to set the threshold to distinguish DT from echo path change (EPC). Adaptive filter falls into the situation that it stops updating its filter coefficients when EPC is erroneously considered as DT at the starting-point of EPC. In addition, in case of echo path changing during the DT period, the end-point detection of DT period fails so that the AEC cannot update its filter coefficients for a while even after the DT period ends. To solve these problems, in this paper, we propose a novel AEC that employs an auxiliary filter. We use the idea that though the error signal cannot be estimated using reference signal in case or DT situation but it can be in case or EPC situation. The experimental result verifies that the proposed method could solve the problems caused by DT detection error or echo path change during the DT period.

Detection of Glottal Closure Instant using the property of G-peak (G-peak의 특성을 이용한 성문폐쇄시점 검출)

  • Keum, Hong;Kim, Dae-Sik;Bae, Myung-Jin;Kim, Young-Il
    • The Journal of the Acoustical Society of Korea
    • /
    • v.13 no.1E
    • /
    • pp.82-88
    • /
    • 1994
  • It is important to exactly detect the GCI(Glottal Closure Instant) in the speech signal processing. A few methods to detect the GCI of voiced speech have een proposer, untill now. But these are difficult to detect the GCI for wide range of speakers and or various vowel signals. In this paper, we prposed a new method for GCI detection using the G-peak. The speech waveforms are passed through the LPF of variable bandwidth. Then, the GCI's of voiced speech are detected by the G-peak based on the filtered signals. We compared the detected with the eye-checked GCI at the SNR of clean, 20dB, and 0dB. We took into account the range within 1ms between eye-checked and detected GCI. We obtained the result of the detection rate as 97.9% in the clean speech, 96.5% in 20dB SNR, and 94.8% in 0dB SNR, respectively.

  • PDF

Development of a Read-time Voice Dialing System Using Discrete Hidden Markov Models (이산 HM을 이용한 실시간 음성인식 다이얼링 시스템 개발)

  • Lee, Se-Woong;Choi, Seung-Ho;Lee, Mi-Suk;Kim, Hong-Kook;Oh, Kwang-Cheol;Kim, Ki-Chul;Lee, Hwang-Soo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.13 no.1E
    • /
    • pp.89-95
    • /
    • 1994
  • This paper describes development of a real-time voice dialing system which can recognize around one hundred word vocabularies in speaker independent mode. The voice recognition algorithm in this system is implemented on a DSP board with a telephone interface plugged in an IBM PC AT/486. In the DSP board, procedures for feature extraction, vector quantization(VQ), and end-point detection are performed simultaneously in every 10 msec frame interval to satisfy real-time constraints after detecting the word starting point. In addition, we optimize the VQ codebook size and the end-point detection procedure to reduce recognition time and memory requirement. The demonstration system has been displayed in MOBILAB of the Korean Mobile Telecom at the Taejon EXPO'93.

  • PDF

A Study on the Robust Pitch Period Detection Algorithm in Noisy Environments (소음환경에 강인한 피치주기 검출 알고리즘에 관한 연구)

  • Seo Hyun-Soo;Bae Sang-Bum;Kim Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.481-484
    • /
    • 2006
  • Pitch period detection algorithms are applied to various speech signal processing fields such as speech recognition, speaker identification, speech analysis and synthesis. Furthermore, many pitch detection algorithms of time and frequency domain have been studied until now. AMDF(average magnitude difference function) ,which is one of pitch period detection algorithms, chooses a time interval from the valley point to the valley point as the pitch period. AMDF has a fast computation capacity, but in selection of valley point to detect pitch period, complexity of the algorithm is increased. In order to apply pitch period detection algorithms to the real world, they have robust prosperities against generated noise in the subway environment etc. In this paper we proposed the modified AMDF algorithm which detects the global minimum valley point as the pitch period of speech signals and used speech signals of noisy environments as test signals.

  • PDF

Speech Activity Detection using Lip Movement Image Signals (입술 움직임 영상 선호를 이용한 음성 구간 검출)

  • Kim, Eung-Kyeu
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.11 no.4
    • /
    • pp.289-297
    • /
    • 2010
  • In this paper, A method to prevent the external acoustic noise from being misrecognized as the speech recognition object is presented in the speech activity detection process for the speech recognition. Also this paper confirmed besides the acoustic energy to the lip movement image signals. First of all, the successive images are obtained through the image camera for personal computer and the lip movement whether or not is discriminated. The next, the lip movement image signal data is stored in the shared memory and shares with the speech recognition process. In the mean time, the acoustic energy whether or not by the utterance of a speaker is verified by confirming data stored in the shared memory in the speech activity detection process which is the preprocess phase of the speech recognition. Finally, as a experimental result of linking the speech recognition processor and the image processor, it is confirmed to be normal progression to the output of the speech recognition result if face to the image camera and speak. On the other hand, it is confirmed not to the output the result of the speech recognition if does not face to the image camera and speak. Also, the initial feature values under off-line are replaced by them. Similarly, the initial template image captured while off-line is replaced with a template image captured under on-line, so the discrimination of the lip movement image tracking is raised. An image processing test bed was implemented to confirm the lip movement image tracking process visually and to analyze the related parameters on a real-time basis. As a result of linking the speech and image processing system, the interworking rate shows 99.3% in the various illumination environments.

Pitch Period Detection Algorithm Using Rotation Transform of AMDF (AMDF의 회전변환을 이용한 피치 주기 검출 알고리즘)

  • Seo, Hyun-Soo;Bae, Sang-Bum;Kim, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.2
    • /
    • pp.1019-1022
    • /
    • 2005
  • As recent information communication technology is rapidly developed, a lot of researches related to speech signal processing have been processed. So pitch period is applied as important factor to many application fields such as speech recognition, speaker identification, speech analysis and synthesis. Therefore, many algorithms related to pitch detection have been proposed in time domain and frequency domain and AMDF(average magnitude difference function) which is one of pitch detection algorithms in time domain chooses time interval from valley to valley as pitch period. But, in selection of valley point to detect pitch period, complexity of the algorithm is increased. So in this paper we proposed pitch detection algorithm using rotation transform of AMDF, that taking the global minimum valley point as pitch period and established a threshold about the phoneme in beginning portion, to exclude pitch period selection. and compared existing methods with proposed method through simulation.

  • PDF