• Title/Summary/Keyword: 화자 검출

Search Result 112, Processing Time 0.026 seconds

A Speaker Change Detection Experiment that Uses a Statistical Method (통계적 기법을 이용한 화자변화 검출 실험)

  • Lee, Kyong-Rok;Kim, Jin-Young
    • Speech Sciences
    • /
    • v.8 no.4
    • /
    • pp.59-72
    • /
    • 2001
  • In this paper, we experimented with speaker change detection that uses a statistical method for NOD (News On Demand) service. A specified speaker's change can find out content of each data in speech if analysed because it means change of data contents in news data. Speaker change detection acts as preprocessor that divide input speech by speaker. This is an important preprocessor phase for speaker tracking. We detected speaker change using GLR(generalized likelihood ratio) distance base division and BIC (Bayesian information criterion) base division among matrix method. An experiment verified speaker change point using BIC base division after divide by speaker unit using GLR distance base method first. In the experimental result, FAR (False Alarm Rate) was 63.29 in high noise environment and FAR was 54.28 in low noise environment in MDR (Missed Detection Rate) 15% neighborhood.

  • PDF

Speech Recognition System for Home Automation Using DSP (DSP를 이용한 홈 오토메이션용 음성인식 시스템의 실시간 구현)

  • Kim I-Jae;Kim Jun-sung;Yang Sung-il;Kwon Y.
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • autumn
    • /
    • pp.171-174
    • /
    • 2000
  • 본 논문에서는 홈 오토메이션 시스템을 음성인식을 도입하여 설계하였다. 많은 계산량과 방대한 양의 데이터의 처리를 요구하는 음성인식을 DSP(Digital Signal Processor)를 통하여 구현해 보고자 본 연구를 수행하였다. 이를 위해 실시간 끝점검출기를 이용하여 추가의 입력장치가 필요하지 않도록 시스템을 구성하였다. 특징벡터로는 LPC로부터 유도한 10차의 cepstrum과 log 스케일 에너지를 이용하였고, 음소수에 따라 상태의 수를 다르게 구성한 DHMM(Discrete Hidden Marcov Model)을 인식기로 사용하였다. 인식단어는 가정 자동화를 위하여 많이 쓰일 수 있는 10개의 단어를 선택하여 화자 독립으로 인식을 수행하였다. 또한 단어가 인식이 되면 인식된 단어에 대해서 현재의 상태를 음성으로 알려주고 이에 대해 자동으로 실행하도록 시스템을 구성하였다.

  • PDF

Design for Crowd Noise Reduction System Using DSI and Spectral Subtraction (DSI와 스펙트럼 차감법을 이용한 군중잡음 감쇄기의 설계)

  • Ahn, Yong-Woon;Kim, Sang-Chul;Kim, Joong-Hwan
    • Annual Conference of KIPS
    • /
    • 2002.11a
    • /
    • pp.703-706
    • /
    • 2002
  • 군중잡음(crowd noise)이 발생하는 환경에서 음성 통화 및 화자 인식을 할 때에는 음성에 파열음이나 마찰음과 같은 유색잡음(colored noise)이 부가되어 원래 음성이 왜곡된다. 이와 같이 왜곡된 음성 신호를 처리할 때에는 군중잡음을 제거하는 과정이 반드시 필요하다. 본 논문에서는 전형적인 군중잡음의 모델인 쇼핑 센터 잡음을 분석하고, 그 결과를 이용하여 음성 신호처리시에 효과적으로 군중잡음만을 제거할 수 있는 모델을 제안한다. 제안된 모델은 시간 영역에서 마찰음과 파열음을 제거하고. DSI(Digital Speech Interpolation)를 이용하여 침묵 구간을 검출한다. 이때 주파수 영역에서는 이 침묵구간을 잡음으로 간주하여 이를 이용한 스펙트럼 차감법(spectral subtraction)으로 음성 신호에 부가된 군중 잡음을 제거하는 과정을 거친다.

  • PDF

A study on real-time implementation of speech recognition and speech control system using dSPACE board (dSPACE 보드를 이용한 음성인식 명령처리시스템 실시간 구현에 관한 연구)

  • 김재웅;정원용
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2000.12a
    • /
    • pp.173-176
    • /
    • 2000
  • 음성은 인간이 가진 가장 편리한 제어전송수단으로 이를 통한 제어는 인간에게 많은 편리함을 제공할 것이다. 본 논문에서는 다층구조 신경망(Multi-Layer Perceptron)을 이용하여 간단한 음성인식 명령처리시스템을 Matlab 상에서 구성해 보았다. 음성인식을 통한 제어의 목적을 위해 화자종속, 고립단어인식기를 목표로 설정하여 연구를 수행하였다. 음성의 시작점과 끝점을 검출하기 위해 단구간 에너지와 영교차율(ZCR)을 이용하였고 인식기의 특징파라미터로는 12차 LPC켑스트럼 계수를 사용하였다. 그리고 신경망의 출력값을 기동, 정지시에 활성화되도록 3개의 계층으로 하였고, 신경망의 뉴런의 개수를 각각 12, 12, 2으로 설정하였다. 먼저 기준음성패턴으로 학습시킨 후에 Matlab 환경하에 동작하는 dSPACE 실시간처리보드에 변환된 C프로그램을 다운로드하고, 음성을 입력하여 인식 후 dSPACE보드의 D/A컨버터의 출력단에 연결된 DC모터를 기동, 정지제어를 수행하였다. 실시간 음성인식 명령처리 시스템 구현을 통하여 원격제어와 같은 음성명령을 통한 제어가 가능함을 확인할 수 있었다.

  • PDF

Digital Twin Classroom using 360 Camera (360 카메라를 이용한 디지털 트윈 강의실)

  • Yoo, Hyeontae;Kim, Jinho;Kim, Yoosung;Park, Inkyu
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2021.06a
    • /
    • pp.232-234
    • /
    • 2021
  • 본 논문에서는 딥러닝 얼굴 인식을 이용하여 실시간 360 공간 Classroom 과 실시간을 기반으로 한 가상 360 공간 Classroom 을 제안한다. MTCNN 을 이용한 얼굴 검출 및 Inception Resnet V1 모델을 이용한 딥러닝 기법을 통해 얼굴인식을 진행하고 HSV 색공간 기반의 화자 판별, 아바타 Rendering, 출석 체크 등을 진행한다. 이후 시각화를 위해 제작한 Web UI/UX 를 통해 사용자에게 현실과 가상 공간을 넘나드는 Twin Classroom 을 제공한다. 따라서 사용자는 새로운 화상 교육 플랫폼에서 보다 개선되고 생동감 있는 Classroom 에서 교육을 받을 수 있다.

  • PDF

Noise-Robust Speech Recognition Using Histogram-Based Over-estimation Technique (히스토그램 기반의 과추정 방식을 이용한 잡음에 강인한 음성인식)

  • 권영욱;김형순
    • The Journal of the Acoustical Society of Korea
    • /
    • v.19 no.6
    • /
    • pp.53-61
    • /
    • 2000
  • In the speech recognition under the noisy environments, reducing the mismatch introduced between training and testing environments is an important issue. Spectral subtraction is widely used technique because of its simplicity and relatively good performance in noisy environments. In this paper, we introduce histogram method as a reliable noise estimation approach for spectral subtraction. This method has advantages over the conventional noise estimation methods in that it does not need to detect non-speech intervals and it can estimate the noise spectra even in time-varying noise environments. Even though spectral subtraction is performed using a reliable average noise spectrum by the histogram method, considerable amount of residual noise remains due to the variations of instantaneous noise spectrum about mean. To overcome this limitation, we propose a new over-estimation technique based on distribution characteristics of histogram used for noise estimation. Since the proposed technique decides the degree of over-estimation adaptively according to the measured noise distribution, it has advantages to be few the influence of the SNR variation on the noise levels. According to speaker-independent isolated word recognition experiments in car noise environment under various SNR conditions, the proposed histogram-based over-estimation technique outperforms the conventional over-estimation technique.

  • PDF

A Study on Out-of-Vocabulary Rejection Algorithms using Variable Confidence Thresholds (가변 신뢰도 문턱치를 사용한 미등록어 거절 알고리즘에 대한 연구)

  • Bhang, Ki-Duck;Kang, Chul-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.11
    • /
    • pp.1471-1479
    • /
    • 2008
  • In this paper, we propose a technique to improve Out-Of-Vocabulary(OOV) rejection algorithms in variable vocabulary recognition system which is much used in ASR(Automatic Speech Recognition). The rejection system can be classified into two categories by their implementation method, keyword spotting method and utterance verification method. The utterance verification method uses the likelihood ratio of each phoneme Viterbi score relative to anti-phoneme score for deciding OOV. In this paper, we add speaker verification system before utterance verification and calculate an speaker verification probability. The obtained speaker verification probability is applied for determining the proposed variable-confidence threshold. Using the proposed method, we achieve the significant performance improvement; CA(Correctly Accepted for keyword) 94.23%, CR(Correctly Rejected for out-of-vocabulary) 95.11% in office environment, and CA 91.14%, CR 92.74% in noisy environment.

  • PDF

Optimal Feature Parameters Extraction for Speech Recognition of Ship's Wheel Orders (조타명령의 음성인식을 위한 최적 특징파라미터 검출에 관한 연구)

  • Moon, Serng-Bae;Chae, Yang-Bum;Jun, Seung-Hwan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.13 no.2 s.29
    • /
    • pp.161-167
    • /
    • 2007
  • The goal of this paper is to develop the speech recognition system which can control the ship's auto pilot. The feature parameters predicting the speaker's intention was extracted from the sample wheel orders written in SMCP(IMO Standard Marine Communication Phrases). And we designed the post-recognition procedure based on the parameters which could make a final decision from the list of candidate words. To evaluate the effectiveness of these parameters and the procedure, the basic experiment was conducted with total 525 wheel orders. From the experimental results, the proposed pattern recognition procedure has enhanced about 42.3% over the pre-recognition procedure.

  • PDF

Fast Algorithm for Recognition of Korean Isolated Words (한국어 고립단어인식을 위한 고속 알고리즘)

  • 남명우;박규홍;정상국;노승용
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.1
    • /
    • pp.50-55
    • /
    • 2001
  • This paper presents a korean isolated words recognition algorithm which used new endpoint detection method, auditory model, 2D-DCT and new distance measure. Advantages of the proposed algorithm are simple hardware construction and fast recognition time than conventional algorithms. For comparison with conventional algorithm, we used DTW method. At result, we got similar recognition rate for speaker dependent korean isolated words and better it for speaker independent korean isolated words. And recognition time of proposed algorithm was 200 times faster than DTW algorithm. Proposed algorithm had a good result in noise environments too.

  • PDF

Fundamental Frequency Estimation of Voiced Speech Signals Based on the Inflection Point Detection (변곡점 검출에 기반한 음성의 기본 주파수 추정)

  • Byeonggwan Iem
    • Journal of IKEEE
    • /
    • v.27 no.4
    • /
    • pp.472-476
    • /
    • 2023
  • Fundamental frequency/pitch period are major characteristics of speech signals. They are used in many speech applications like speech coding, speech recognition, speaker identification, and so on. In this paper, some of inflection points are used to estimate the pitch which is the inverse of the fundamental frequency. The inflection points are defined as points where local maxima, local minima or the slope changes occur. The speech signal is preprocessed to remove unnecessary inflection points due to the high frequency components using a low pass filter. Only the inflection points from local maxima are used to get the pitch period. While the existing pitch estimation methods process speech signals in blockwise, the proposed method detects the inflection points in sample and produces the pitch period/fundamental frequency estimates along the time. Computer simulation shows the usefulness of the proposed method as a fundamental frequency estimator.