• 제목/요약/키워드: 화자 검증

검색결과 63건 처리시간 0.027초

ETRI신기술-화자검증기술

  • 한국전자통신연구원
    • 전자통신동향분석
    • /
    • 제14권5호통권59호
    • /
    • pp.151-152
    • /
    • 1999
  • 화자검증기술은 화자의 입력음성으로부터 화자의 특성을 계산하고 해당 화자를 유일하게 구분할 수 있는 통계적 모수를 추출하여 이를 화자의 개인 데이터베이스로 구축하며, 검증시에는 개인데이터베이스와 입력되는 미지 화자의 특성에 대한 유사도를 비교.검증하는 것이다. 또한 이때 주어진 임계치(Threshold)의 만족 정도에 따라 동일 화자여부를 결정하는 결정논리(decision logic)로 검증엔진을 구성하는 기술이며, 응용영역에 따라 환경잡음, 채널잡음 등 사용환경과 전체시스템과의 적절한 시나리오 구성 등이 실용화를 위한 중요한 척도가 된다.

  • PDF

GMM 기반의 문맥독립 화자 검증 시스템의 성능 향상 (Performance Improvement in GMM-based Text-Independent Speaker Verification System)

  • 함성준;신광호;김민정;김주곤;정호열;정현열
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 2004년도 추계학술발표대회논문집 제23권 2호
    • /
    • pp.131-134
    • /
    • 2004
  • 본 논문에서는 GMM(Gaussian Mixture Model)을 이용한 문맥독립 화자 검증 시스템을 구현한 후, arctan 함수를 이용한 정규화 방법을 사용하여 화자검증실험을 수행하였다. 특징파라미터로서는 선형예측방법을 이용한 켑스트럼 계수와 회귀계수를 사용하고 화자의 발성 변이를 고려하여 CMN(Cepstral Mean Normalization)을 적용하였다. 화자모델 생성을 위한 학습단에서는 화자발성의 음향학적 특징을 잘 표현할 수 있는 GMM(Gaussian Mixture Model)을 이용하였고 화자 검증단에서는 ML(Maximum Likelihood)을 이용하여 유사도를 계산하고 기존의 정규화 방법과 arctan 함수를 이용한 방법에 의해 정규화된 점수(score)와 미리 정해진 문턱값과 비교하여 검증하였다. 화자 검증 실험결과, arctan 함수를 부가한 방법이 기존의 방법보다 항상 향상된 EER을 나타냄을 확인할 수 있었다.

  • PDF

화자 검증 시스템을 위한 PCA 기반 MFDWC 특징 파라미터 (A PCA-based MFDWC Feature Parameter for Speaker Verification System)

  • 함성준;정호열;정현열
    • 한국음향학회지
    • /
    • 제25권1호
    • /
    • pp.36-42
    • /
    • 2006
  • 본 논문에서는 화자검증 시스템의 성능향상을 위해서 주성분 분석 (PCA) 기반 Mel-Frequency Discrete Wavelet Coefficients (MFDWC) 추출방법을 제안한다. 제안된 방법에서는 멜척도 (Mel-scale)를 근사화한 각 레벨 (level)의 각 노드 (node) 에너지를 계산하기 위해 기존의 평균치 대신 주성분 분석을 이용한 첫 번째 eigenvector를 이용한다. 이 eigenvecto.의 제곱의 합은 1로서 일반적인 가중 함수 (weighting function)의 조건을 만족하고, 또한 각 화자마다 서로 다른 값을 갖게 되므로, 화자의 특징을 더 잘 나타내는 MFDWC를 추출할 수 있다. 화자검증은 Gaussian Mixture Model (GMM) 기반의 백그라운드 모델과 화자 모델과의 점수를 비교하는 이진 결정 (binary decision) 방법을 이용하여 Universal 백그라운드 모델 (UBM)과 각 화자 모델의 값을 프레임단위로 비교하여 대상 화자의 수락/거부 여부를 결정하는 방법을 채택하였다. 특징 파라미터에 따른 화자 검증 성능변화를 확인하기 위하여 제안된 화자종속 가중함수를 이용한 MFDWC를 특징 파라미터로 이용한 경우와 Mel-Frequency Cepstral Coefficients (MFCC), Linear Predictive Cepstral Coefficients (LPCC), 기존의 MFDWC를 특징 파라미터로 이용한 경우에 대하여 성능비교실험을 수행한 결과 각각 $0.80\%,\;5.14\%,\; 6.69\%$의 향상된 성능을 나타내어 제안한 방법의 유효성을 확인할 수 있었다.

문장 독립 화자 검증을 위한 그룹기반 화자 임베딩 (Group-based speaker embeddings for text-independent speaker verification)

  • 정영문;엄영식;이영현;김회린
    • 한국음향학회지
    • /
    • 제40권5호
    • /
    • pp.496-502
    • /
    • 2021
  • 딥러닝 기반의 심층 화자 임베딩 방식은 최근 문장 독립 화자 검증 연구에 널리 사용되고 있으며, 기존의 i-vector 방식에 비해 더 좋은 성능을 보이고 있다. 본 연구에서는 심층 화자 임베딩 방식을 발전시키기 위하여, 화자의 그룹 정보를 도입한 그룹기반 화자 임베딩을 제안한다. 훈련 데이터 내에 존재하는 전체 화자들을 정해진 개수의 그룹으로 비지도 클러스터링 하며, 고정된 길이의 그룹 임베딩 벡터가 각각의 그룹을 대표한다. 그룹 결정 네트워크가 각 그룹에 대응되는 그룹 가중치를 출력하며, 이를 이용한 그룹 임베딩 벡터들의 가중 합을 통해 집합 그룹 임베딩을 추출한다. 최종적으로 집합 그룹 임베딩을 심층 화자 임베딩에 더해주어 그룹기반 화자 임베딩을 생성한다. 이러한 방식을 통해 그룹 정보를 심층 화자 임베딩에 도입함으로써, 화자 임베딩이 나타낼 수 있는 전체 화자의 검색 공간을 줄일 수 있고, 이를 통해 화자 임베딩은 많은 수의 화자를 유연하게 표현할 수 있다. VoxCeleb1 데이터베이스를 이용하여 본 연구에서 제안하는 방식이 기존의 방식을 개선시킨다는 것을 확인하였다.

화자검증을 위한 새로운 코호트 선택 방법 (A New Method of Selecting Cohort for Speaker Verification)

  • 김성준;계영철
    • 한국음향학회지
    • /
    • 제22권5호
    • /
    • pp.383-387
    • /
    • 2003
  • 본 논문에서는 기존의 고정크기의 코호트 집단을 기반으로 한 화자검증 방법을 다룬다. 특히, 본 논문에서는 고정크기의 코호트 대신에 화자모델들 사이의 거리를 이용하는 가변크기의 새로운 코호트를 제안한다: 제안된 새로운 방식에서는 각 화자로부터 일정한 거리 내에 있는 주변 화자모델들의 밀집도가 고려된다. 그 화자주변의 밀집도가 높으면 코호트의 크기가 자동적으로 증가되어 화자검증률이 개선되고, 반면 밀집도가 적으면 코호트의 크기가 감소되어 계산량이 줄어든다 실험결과 제안된 방법이 기존의 방식에 비하여 EER (Equal Error Rate)을 감소시킴을 확인할 수 있었다.

서브밴드 가중치를 이용한 잡음에 강인한 화자검증 (Noise Rabust Speaker Verification Using Sub-Band Weighting)

  • 김성탁;지미경;김회린
    • 한국음향학회지
    • /
    • 제28권3호
    • /
    • pp.279-284
    • /
    • 2009
  • 화자검증은 발성화자가 제시화자 (claimed speaker)인지 아닌지를 구별하는 것이다. 기존의 화자검증 시스템인 GMM-UBM 방식의 화자검증 시스템은 무잡음 환경에서는 높은 검증성능을 보이지만, 잡음환경에서는 성능이 급격히 떨어지는 단점이 있다. 이런 단점을 극복하기 위해 멀티밴드를 이용한 방법인 특징벡터 재결합방법이 제안되었지만, 특징벡터 재결합방법은 전체 서브밴드 특징벡터들을 사용하여 유사도를 계산하는 단점이 있다. 이런 단점을 극복하기 위해 기 발표된 이전 논문에서 각 서브밴드 유사도를 독립적으로 계산하는 변형된 특징벡터 재결합방법을 제안하였고, 본 논문에서는 변형된 특징벡터 재결합방법과 각 서브밴드들의 신뢰도를 나타내는 신호 대 잡음비를 이용한 가중치를 이용하여 잡음환경에서 기존의 특징벡터 재결합방법에 비해 에러를 28% 감소시켰다.

음성을 이용한 화자 검증기 설계 및 구현 (Design and Implementation of Speaker Verification System Using Voice)

  • 지진구;윤성일
    • 한국컴퓨터정보학회논문지
    • /
    • 제5권3호
    • /
    • pp.91-98
    • /
    • 2000
  • 본 논문은 음성을 이용하여 개인의 신원을 확인할 수 있는 화자 검증시스템을 설계, 구현하였다. 특징 파라메터로는 선형 예측 계수나 고속 후리에 변환보다 안정적이고 계산량이 적은 장점이 있는 필터뱅크(filterbank)를 사용했으며 추출된 파라메터들을 LBG 알고리즘을 이용하여 각 개인의 코드북을 작성하였다. 작성된 코드북에 의해 특징 파라메터를 벡터양자화하여 얻어진 코드열로 화자 검증의 참조 패턴 및 입력 패턴을 생성, 이들을 동적시간 정합법을 이용하여 유사도를 측정하여 얻어진 유사도와 임계값을 비교하여 음성 의뢰자(client speaker)인지, 사칭자(impostor)인지 결정하는 화자 검증기를 설계, 구현하였다.

  • PDF

Voxceleb과 한국어를 결합한 새로운 데이터셋으로 학습된 ECAPA-TDNN을 활용한 화자 검증 (Speaker verification with ECAPA-TDNN trained on new dataset combined with Voxceleb and Korean)

  • 윤금재;박소영
    • 응용통계연구
    • /
    • 제37권2호
    • /
    • pp.209-224
    • /
    • 2024
  • 화자검증(speaker verification)이란 두개의 음성 데이터로부터 같은 화자의 목소리 인지 아닌지를 판단하는것을 말한다. 범죄현장에서 범인의 목소리만이 증거로 남는경우, 두개의 목소리를 객관적이고 정확하게 비교할 수 있는 화자 검증 시스템 또는 화자 매칭 시스템의 구축이 시급하다. 본 연구에서는 한국어에 대한 화자검증 딥러닝 모형을 새롭게 구축하고, 학습에 필요한 적절한 형태의 학습데이터셋에 대해 연구한다. 음성데이터는 고차원이면서 백그라운드 노이즈를 포함하는 등의 변동성이 큰 특징이 있다. 따라서 화자 검증 시스템을 구축하기위해 딥러닝 기반의 방법 선택하는경우가 많다. 본 연구에서는 ECAPA-TDNN 모형을 선택하여 화자 매칭 알고리즘을 구축하였다. 구축한 모형을 학습시키는데 사용한 Voxceleb은 대용량의 목소리 데이터로 다양한 국적을 가진 사람들로부터 음성데이터를 포함하지만 한국어에 대한 정보는 포함하지 않는 다. 본 연구에서는 한국어 음성데이터를 학습에 포함시켰을때와 포함시키지 않았을때 학습 데이터 내 해당언어의 존재 유무가 모델의 성능에 미치는 영향에 대해 파악하였다. Voxceleb으로만 학습한 모델과 언어와 화자의 다양성을 최대로 하기 위해 Voxceleb과 한국어 데이터셋을 결합한 데이터셋으로 학습한 모델을 비교하였을 때, 모든 테스트 셋에 대해 한국어를 포함한 학습데이터의 성능이 개선됨을 보인다.

GMM-UBM 기반 KL 거리를 활용한 화자변화 검증에 대한 연구 (The Study on the Verification of Speaker Change using GMM-UBM based KL distance)

  • 조준범;이지은;이경록
    • 중소기업융합학회논문지
    • /
    • 제6권4호
    • /
    • pp.71-77
    • /
    • 2016
  • 본 논문에서는 기존의 BIC(Bayesian Information Criterion) 기반 화자변화의 성능 향상을 위하여 GMM-UBM(Gaussian Mixture Model-Universal Background Model) 기반 KL(Kullback Leibler) 거리를 활용한 화자변화 검증을 제안하였다. 정보량의 차이에 민감한 기존의 BIC 기반 화자변화검출 알고리즘을 상대적으로 정보량 차이에 견인한 KL 거리 알고리즘으로 검증하였고, 정보량의 비대칭을 보상하기 위해서 GMM-UBM을 활용하였다. 기존의 BIC 기반 화자변화 검출은 1단계로 비유사도 d가 양수인 구간의 국소 최댓값인 지점을 화자변화 후보지점으로 검출하였고, 2단계로 검출된 화자변화 후보지점 중 ${\Delta}BIC$가 양수인 지점을 화자변화지점으로 결정하였다. 본 논문에서는 BIC 기반 화자변화 검출에 의해 결정된 화자변화지점에 대하여 GMM-UBM 기반 KL 거리 D가 문턱치(threshold)보다 높은 지점을 최종 화자변화 지점으로 검증하였다. 실험결과, MDR(Missed Detection Rate)이 0인 조건에서 문턱치 0.028일 때 FAR(False Alarm Rate) 60.4%로 성능이 향상되었다.

프레임단위유사도정규화를 이용한 문맥독립화자식별시스템의 성능 향상 (Improving A Text Independent Speaker Identification System By Frame Level Likelihood Normalization)

  • 김민정;석수영;정현열;정호열
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2001년도 제14회 신호처리 합동 학술대회 논문집
    • /
    • pp.487-490
    • /
    • 2001
  • 본 논문에서는 기존의 Caussian Mixture Model을 이용한 실시간문맥독립화자인식시스템의 성능을 향상시키기 위하여 화자검증시스템에서 좋은 결과를 나타내는 유사도정규화 ( Likelihood Normalization )방법을 화자식별시스템에 적용하여 시스템을 구현하였으며, 인식실험한 결과에 대해 보고한다. 시스템은 화자모델생성단과 화자식별단으로 구성하였으며, 화자모델생성단에서는, 화자발성의 음향학적 특징을 잘 표현할 수 있는 GMM(Gaussian Mixture Model)을 이용하여 화자모델을 작성하였으며. GMM의 파라미터를 최적화하기 위하여 MLE(Maximum Likelihood Estimation)방법을 사용하였다. 화자식별단에서는 학습된 데이터와 테스트용 데이터로부터 ML(Maximum Likelihood)을 이용하여 프레임단위로 유사도를 계산하였다. 계산된 유사도는 유사도 정규화 과정을 거쳐 스코어( SC)로 표현하였으며, 가장 높은 스코어를 가지는 화자를 인식화자로 결정한다. 화자인식에서 발성의 종류로는 문맥독립 문장을 사용하였다. 인식실험을 위해서는 ETRI445 DB와 KLE452 DB를 사용하였으며. 특징파라미터로서는 켑스트럼계수 및 회귀계수값만을 사용하였다. 인식실험에서는 등록화자의 수를 달리하여 일반적인 화자식별방법과 프레임단위유사도정규화방법으로 각각 인식실험을 하였다. 인식실험결과, 프레임단위유사도정규화방법이 인식화자수가 많아지는 경우에 일반적인 방법보다 향상된 인식률을 얻을수 있었다.

  • PDF