본 논문에서는 기존의 확률적 화자군집 모델을 MLP(multi-layer perceptron)로 구현하는 방법과 원형 화자군집 모델이 갖는 문제를 해결할 수정 모델을 제시한다. 화자군집 모델은 화자등록 시간에 민감한 실용 환경에서 중요한 의미를 지닌다. 본 연구에서 사용한 인식단위는 여러 음소계열에서 지속적인 부분을 추출한 지속음이므로 화자등록과 증명 단계에서 특정한 어구에 한정되지 않는 어구독립 방식을 채택한다.
음성은 차량 운행시 여러 가지 조작으로 분주한 운전자에게 간편한 장비 입력 및 조작을 위한 수단으로 유용한 특성을 지니고 있다. 본 논문에서는 이런 음성의 특성을 이용하여 차량 도난이나 중요한 온라인 서비스 접근시 신원을 증명할 수 있는 화자증명 방식을 제안한다. 이 방식에서는 음성의 언어정보를 이용하는 지속음 인식 기법과 함께 확률적 인식 방식에 비해 몇 가지 이점을 갖는 MLP(multi-layer perceptron)를 사용한다. 하지만 MLP를 사용하는 인식 기법은 학습에 많은 계산량을 요구하므로 실시간으로 화자를 등록해야 하는 화자증명에서는 적용하기가 쉽지 않다. 이 문제를 해결하기 위해 본 논문에서는 기존의 화자점수 평준화 방법에서 화자군집 모델 기법을 도입하여 배경화자를 사전에 여러 개의 작은 화자군집으로 분리하는 방법을 제안한다. 등록화자를 이렇게 나눈 화자군집 중 하나로 분류한 뒤 해당 화자군집에 대해서만 등록 학습과정을 거치는 방법으로 계산량을 큰 폭으로 줄일 수 있다.
본 논문에서는 eigenvoice 방식에 기반하여 다양한 잡음 환경에 강인한 고속 화자 적응 방법을 제안하였다. 제안된 방법은 잡음 제거 기술과 환경 군집화 방법을 기반으로 한다. 그러나, 잡음 제거 기술을 통해 잡음을 제거한 후에도 여전히 잔여 잡음이 존재하므로 비음성 구간의 켑스트럼 평균을 사용하여 잡음 환경별로 화자 적응 데이터를 분류한 후 각각의 환경별로 환경 모델을 구성한다. 이러한 환경 군집화를 적응데이터에 대해 구성한 후 테스트 음성이 입력되면 군집화된 모델 중에서 인식 데이터와 가장 유사한 복수의 환경별 군집화된 화자 적응 모델을 구한 후 이들의 가중함을 통해 화자 적응을 수행하는 방법이다. 제안된 방법은 적응 및 평가를 통해 화자 독립 모델을 사용한 경우에 비해 $40{\sim}59%$ 인식 오류 감소율을 얻었다.
다층 신경망 (MLP: multilayer perceptron)은 기존의 패턴인식 방법에 비해 몇 가지 이점을 제공하지만 학습에 비교적 많은 시간을 요구한다. 이 점은 화자증명 시스템의 인식방법으로서 다층 신경망을 사용할 경우 등록시간이 길어지는 문제를 발생시킨다. 본 논문에서는 기존의 시스템에서 채택한 화자군집 방법을 응용하여 다층 신경망 학습에 필요한 배경화자 수를 줄임으로써 화자등록 시간을 단축하는 방법을 제안하고, 지속음을 인식단위로 하는 다층 신경망 화자증명 시스템에 이 방법을 적용한 실험결과를 통해 그 효과를 확인한다.
본 연구에서는 집단화 오차를 최소로 하기위해 개선된 LBG 알고리즘을 제안한다. 기존의 LBG 알고리즘은 화자확인 시스템에 적용시 소량의 학습 데이터의 분포가 가지는 특수성으로부터 기인하는 문제점들이 발생한다. 즉, 개인별 특성을 무시하고 항상 일정한 크기의 코드북을 생성해야 하는데서 기인하는 군집화 오류와 분할할 (Splitting) 방향을 잘못 선택하면서 발생하는 집단화의 오류가 전체 화자 인식율 저하의 원인이 된다. 따라서, 본 연구에서는 개인별로 최적의 크기를 가지는 가변길이 코드북 생성 기법과 중심값으로부터 최외곽의 멤버 벡터 인덱스를 찾고 다시 최외곽 멤버 벡터에서 가장 먼 멤버 벡터 인덱스를 찾음으로써 분할할 방향을 인위적으로 지정해 주는 개선된 군집화 알고리즘을 제안한다. 실험 결과, 제안된 방식을 적용한 화자확인 시스템이 기존의 LBG알고리즘을 사용한 시스템보다 오거부율(FR)은 3.165%, 오수락율 (FA)는 0.06%씩 각각 향상 되었다.
MLP(multilayer perceptron)는 기존의 패턴인식 방법에 비해 몇 가지 이점을 제공하지만 학습에 비교적 많은 시간을 요구한다. 이 점은 화자증명 시스템의 인식방법으로서 MLP를 사용할 경우 등록시간이 길어지는 문제를 발생시킨다. 본 논문에서는 기존의 시스템에서 채택한 화자군집 방법을 응용하여 MLP 학습에 필요만 배경화자 수를 줄임으로써 화자등록 시간을 단축하는 방법을 제안한다.
다층신경망 (multilayer perceptron)이 다른 패턴인식 방법에 비해 여러 가지 이점을 제공하지만 다층신경망에 기반한 화자증명 시스템은 낮은 증명오류를 달성하기 위한 대규모 배경화자로 인한 느린 등록속도의 문제를 안는다. 이 문제를 해결하기 위해 QnDCS(quantitative discriminative cohort speakers) 방법에서 화자군집 방법을 다층신경망 기반화자증명 시스템에 도입하여 화자등록에 필요한 배경화자의 수를 줄이려는 시도가 있었다. QnDCS 방법이 목적을 어느 정도 달성하긴 했지만 등록속도의 향상률이 만족할만한 수준이지 못했다. 본 논문에서는 보다 높은 등록속도 향상률을 달성하기 위한 방법으로서, 선택되는 배경화자의 수를 더욱 낮추는 정질에 기반한 기준을 도입한 QlDCS (qualitative discriminative cohort speakers) 방법을 제안한다. 두 방법에 대한 성능평가를 위해 다층신경망과 지속음에 기반한 화자증명 시스템과 음성 데이터베이스를 사용한 실험을 실시한다 그 결과 제안한 방법이 QlDCS에 비해 온라인 방식의 EBP (error backpropagation)에 대한 학습속도 향상률 면에서 2배 이상 더 짧은 시간 내에 화자를 등록하는 것으로 나타나 보다 높은 효율을 지녔음을 증명한다.
잡음이 많고 여러 사람이 있는 공간에서 음성인식의 성능은 깨끗한 환경보다 저하될 수밖에 없다. 이러한 문제점을 해결하기 위해 본 논문에서는 여러 신호가 섞인 혼합 음성에서 관심 있는 화자의 음성만 추출한다. 중첩된 구간에서도 효과적으로 분리해내기 위해 VoiceFilter 모델을 사용하였으며, VoiceFilter 모델은 여러 화자의 발화로 이루어진 음성과 관심 있는 화자의 발화로만 이루어진 참조 음성이 입력으로 필요하다. 따라서 본 논문에서는 Probabilistic Linear Discriminant Analysis(PLDA) 유사도 점수로 군집화하여 혼합 음성만으로도 참조 음성을 대체해 사용하였다. 군집화로 생성한 음성에서 추출한 화자 특징과 혼합 음성을 VoiceFilter 모델에 넣어 관심 있는 화자의 음성만 분리함으로써 혼합 음성만으로 화자 구분 시스템을 구축하였다. 2명의 화자로 이루어진 전화 상담 데이터로 화자 구분 시스템의 성능을 평가하였으며, 분리 전 상담사(Rx)와 고객(Tx)의 음성 Source to Distortion Ratio(SDR)은 각각 5.22 dB와 -5.22 dB에서 분리 후 각각 11.26 dB와 8.53 dB로 향상된 성능을 보였다.
이 논문은 문맥 독립 화자인식에 사용될 벡터 양자기의 설계법 개선에 관한 연구이다. 구체적으로 벡터 양자기 코드북 생성 과정에서 특징 벡터 공간을 분할하여, 양자기 설계 시 학습에 필요한 계산 복잡도를 획기적으로 줄이는 방법을 제안한다. 제안된 공간 분할 벡터 양자기 설계법은 저자가 제안한 문맥 종속 화자인식을 위한 준비반복 벡터 양자기 설계법의 벡터 공간에 대한 일반화이다. 공간 분할 벡터 양자기 설계법은 종래의 설계법이 코드북 생성에 반복적 학습 설계를 사용한다는 것과 대조를 이룬다. 또한 공간 분할 벡터 양자기 설계법의 특징은 다음과 같다. 첫째, 이 설계법은 특징 벡터 공간을 분할한 공간 분할 군집을 이용함으로써 반복 학습을 하지 않는다. 둘째, 설계된 각 양자 영역은 공간 분할 군집의 양자 영역을 원용하며, 양자점은 각각의 통계 분포에 대해 최적점으로 설정된다. 셋째, 공간 분할 군집은 특징 벡터 집합에 대해 표본 벡터 생성법(CSVQ1, 2), 특징 벡터 공간에 대해 균일 초격자 구조 생성법(CSYQ3)으로 형성하였다. 수치 실험은 화자 10명이 발성한 50개의 문장에 대해 문맥 독립 화자인식 실험으로 수행되었다. 특징계수는 12차 멜켑스트럼 벡터를 사용하였고 각각의 공간 분할 코드북 생성법에 대해 코드북 크기를 32부터 128까지 변화시키면서 기존의 벡터 양자기 인식법과 비교하였다. 제안된 방법은 표본 벡터 생성법을 사용한 경우 인식률 100%로 기존의 방법과 같은 결과를 보였다. 따라서 제안된 공간 분할 벡터 양자기 설계법은 설계에 필요한 계산량이 획기적으로 줄면서 인식률은 보존되어 문맥 독립 화자 인식에 새로운 대안이 되며 또한 특징 벡터 공간을 설정할 수 있는 다양한 응용에 적용이 가능할 것으로 사료된다.
MLP(multilayer perceptron)는 다른 패턴인식 방법에 비해 몇 가지 유리한 이점을 지니고 있어 화자증명 시스템의 화자학습 및 인식 방법으로서 사용이 기대된다. 그러나 MLP의 학습은 학습에 이용되는 EBP(error backpropagation) 알고리즘의 저속 때문에 상당한 시간을 소요한다. 이 점은 화자증명 시스템에서 높은 화자인식률을 달성하기 위해서는 많은 배경화자가 필요하다는 점과 맞물려 시스템에 화자를 등록하기 위해 많은 시간이 걸린다는 문제를 낳는다. 화자증명 시스템은 화자 등록후 곧바로 증명 서비스를 제공해야 하기 때문에 이 문제를 해결해야 한다. 본 논문에서는 이 문제를 해결하기 위해 EBP의 학습속도를 개선하는 방법과, 기존의 화자증명 방법에서 화자군집 방법을 도입한 배경화자 축소방법을 사용하여 MLP 기반 화자증명 시스템에서 화자등록에 필요한 시간의 단축을 시도한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.