• Title/Summary/Keyword: 화산 활동도

Search Result 276, Processing Time 0.031 seconds

Analysis of Global Volcanic Activity During 2019 (2019년 지구에서 분화한 화산 활동 분석)

  • Yun, Sung-Hyo;Ban, Yong-Boo;Chang, Cheolwoo;Lee, Jeonghyun
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.33 no.4
    • /
    • pp.451-462
    • /
    • 2020
  • There are 82 volcanoes active during the 48 weeks of 2019 (January 30 to December 31, 2019; USGS data) Approximately 80~90 volcanoes are active on the Earth for a year. More than 91% of these volcanoes are took place in the circum-Pacific volcanic belt, which is commonly called 'Ring of Fire'. This status coincides with the distribution maps of active volcanoes on the earth: about 80 percent on subduction zone of the convergent plate boundaries; 15 percent on divergent plate boundaries; 5 percent on intra-plate zone. Typically five volcanoes are most active during the survey period (48 weeks); Dukono (Halmahera, Indonesia) 48 times, Aira (Kyushu, Japan) 47 times, Ebeko (Paramushir Island, Russsia) 46 times, Merapi (Central Java, Indonesia) 37 times, Krakatau (Indonesia) 33 times. The comparison of volcanic activity between 2018 and 2019 showed no significant difference. It is assumed that volcanic activity remains stable.

화산

  • Heo, Ju-Hui
    • The Science & Technology
    • /
    • no.2 s.405
    • /
    • pp.10-15
    • /
    • 2003
  • 우리가 사는 지구 내부에서 만물을 순식간에 녹여버릴 듯한 불덩이가 솟구치는데, 그것을 화산이라고 한다. 화산이라는 용어인 volcano는 '불의 신'이라 불리는 'vulcan'에서 유래되었다. 즉, 이 '불의 신'이 끓어오르는 '화기(火氣)'를 주체하지 못할 때 화산활동은 시작되는 것이다. 화산활동이 일어나는 지역의 원시부족들은 불을 내뿜는 화산을 '신의 분노' 혹은 '신의 저주'라고 해석한다.

  • PDF

북한의 화산지형 소고

  • 홍시환
    • Proceedings of the Speleological Society Conference
    • /
    • 1994.11a
    • /
    • pp.76-77
    • /
    • 1994
  • 한반도는 지질적으로 안정된 지괴를 유지하고 있기 때문에 활화산이 없고 화산지형도 극히 제한된 지역에 분포하고 있다. 지질사적으로 중생대 이전의 화산활동을 제외하면, 주로 현지 표면상에 나타나는 화산활동의 흔적에 의한 지형들은 대개 신생대 제3기의 주요 화산활동으로써 백두산(2744m), 무두봉(1930m), 대연시봉(2360m), 북포태산(2289m), 남포태산(2435m), 소연지봉(2123m), 관모봉(1387m), 소배산(2174m), 두류산(2309m), 칠보산(906m) 등이 백두산 화산대(그림 1)의 열하를 따라 남동쪽 설령(2442m), 만탑산(2205m) 과거의 일직선상의 수많은 분출공에서 유동성이 큰 현무암의 분출이 있었다.(중략)

  • PDF

북한의 화산지형 소고

  • 오종우
    • Journal of the Speleological Society of Korea
    • /
    • v.36 no.37
    • /
    • pp.33-37
    • /
    • 1994
  • 한반도는 지질적으로 안정된 지괴를 유지하고 있기 때문에 활화산이 없고 화산지형도 극히 제한된 지역에 분포하고 있다. 지질사적으로 중생대 이전의 화산활동을 제외하면, 주로 현지 표면상에 나타나는 화산활동의 흔적에 의한 지형들은 대게 신생대 제3기의 주요 화산활동으로써 백두산(2744m), 무두봉(1930m), 대연시봉(2360m), 북포태산(2289m), 남포태산(2435m), 소연지봉(2123m), 관모봉(1387m), 소배산(2174m), 두류산(2309m), 칠보산(906m) 등이 백두산 화산대(그림 1)의 열하를 따라 남동쪽 설령(2442m), 만탑산(2205m) 과 거의 일직선상의 수많은 분출공에서 유동성이 큰 현무암의 분출이 있었다.(중략)

  • PDF

제주 북서사면 용암동굴의 화학분석

  • 최무웅;임종호
    • Journal of the Speleological Society of Korea
    • /
    • v.12 no.13
    • /
    • pp.13-22
    • /
    • 1986
  • 화산활동 지역에서는 lava의 점성, 산도, 화산체로 부터의 공급량, 기반의 경사등에 의해 다양한 화산지형을 형성하고 있다. 제주도 역시 과거 지질 시대를 통하여 수차례의 화산활동이 있었기 때문에 화산체를 중심으로 그 주변 지역에 용암동굴이 산재되어 관광 자원으로 큰 목을 하고 있는 동굴은 금령의 만장굴과 협재의 협재굴등이 그 대표적이라고 볼 수 있으며 규모 역시 세계적이라고 사료된다. (중략)

  • PDF

Study of the Last Volcanic Activity on Historical Records on Jeju Island, Korea (고문헌에 기록된 제주도 최후기 화산활동에 관한 연구)

  • Ahn, Ung San
    • The Journal of the Petrological Society of Korea
    • /
    • v.25 no.1
    • /
    • pp.69-83
    • /
    • 2016
  • Radiocarbon and OSL ages of three monogenetic volcanoes inferred to be the last volcanoes on Jeju Island, Korea were determined to identify a volcano described in historical records. The results show that the ages of those volcanoes are roughly <3.8 ka (Songaksan), >4.5 ka (Biyangdo), and <6~7 ka (Ilchulbong). Though our efforts to make a positive match between historical records and volcano-chronological dating were not successful, we make a new suggestion in this paper that two historical records of volcanic activity in 1002 and 1007 A.D. could be interpreted to be the sequential volcanic events from a single monogenetic volcano. In addition, based on a volcanological reinterpretation of historical records, we infer that the volcano described therein is most likely Mt. Songaksan, in Daejeongeup, which had early phreatomagmatic and late magmatic activities after 3.8 ka ago. Furthermore, considering the geopolitical relationship between the Goryeo Dynasty and the Tamna Kingdom, in addition with the culture of the era, this study sheds new light on the possibility that there is a time gap between the actual eruptions and the historical recording of them by ancient people.

Application of Landsat TM/ETM+ Images to Snow Variations Detection by Volcanic Activities at Southern Volcanic Zone, Chile (Landsat TM/ETM+ 위성영상을 활용한 칠레 Southern Volcanic Zone의 화산과 적설변화와의 상관성 연구)

  • Kim, Jeong-Cheol;Jung, Hyung-Sup
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.3
    • /
    • pp.287-299
    • /
    • 2017
  • The Southern Volcanic Zone (SVZ) of Chile consists of many volcanoes, including the Mt.Villarrica and Mt.Llaima, and the two volcanoes are covered with snow at the top of Mountain. The purpose of this study is to analyze the relationship between the ice caps and the volcanic activity of the two volcanoes for 25 years by using the satellite image data are available in a time series. A total of 60 Landsat-5 TM and Landsat-7 ETM + data were used for the study from September 1986 to February 2011. Using NDSI (Normalized Difference Snow Index) algorithm and SRTM DEM, snow cover and snowline were extracted. Finally, the snow cover area, lower-snowline, and upper-snowline, which are quantitative indicators of snow cover change, were directly or indirectly affected by volcanic activity, were extracted from the satellite images. The results show that the volcanic activity of Villarrica volcano is more than 55% when the snow cover is less than 20 and the lower-snowline is 1,880 m in Llaima volcano. In addition, when the upper-snowline of the two volcanoes is below -170m, it can be confirmed that the volcano is differentiated with a probability of about 90%. Therefore, the changes in volcanic snowfall are closely correlated with volcanic activity, and it is possible to indirectly deduce volcanic activity by monitoring the snow.

Analysis of Global Volcanic Activity during 2018 (2018년 지구에서 분화한 화산 활동 분석)

  • Yun, Sung-Hyo;Ban, Yong-Boo;Chang, Cheolwoo
    • The Journal of the Petrological Society of Korea
    • /
    • v.28 no.1
    • /
    • pp.39-52
    • /
    • 2019
  • Volcanic activity, which can read to various danger and hazards to human life, has been part of the Earth's history for a long time. There are approximately 1,520 volcanoes during the Holocene period (about 10,000 years ago) that have been active on Earth. Recently, there are about 210 volcanoes have been recorded since 2010. Meanwhile, there are 83 known active volcanoes in 2018 based on the USGS data. Approximately 80-90 volcanoes are active on Earth for over a year. More than 90% of these volcanoes are located on the circum-Pacific volcanic belt, commonly known as 'Ring of Fire'. This high number of active volcanoes within this area coincides with the distribution maps of active volcanoes on the earth: about 80% on subduction zone of the convergent plate boundaries; 15% on divergent plate boundaries and 5% on intra-plate zone. Five volcanoes are most active during the survey period of 51 weeks: 50 times in Aira (Japan), 49 times in Sabankaya (Peru), 49 times in Sheveluch (Russia), 44 times in Ebeko (Russia) and 40 times in Kirishimayama (Japan). Based on the available data about volcanic activity, there is no significant change in volcanic activity and similar levels of volcanic activity is observed every year.

Analysis of Global Volcanic Activities since 2010 (2010년 이후 지구에서 발생한 화산활동 분석)

  • Yun, Sung-Hyo;Ban, Yong-Boo
    • The Journal of the Petrological Society of Korea
    • /
    • v.25 no.4
    • /
    • pp.409-419
    • /
    • 2016
  • The number of volcanoes erupted during the past ten thousand years(Holocene period) on this planet is known to stand around 1,520. Of those volcanoes, the number of active volcanoes during the six-years and seven-month period(January 2010 through the end of July 2016) is totals 209. These findings show that an average of approximate 90 volcanoes erupted every year since 2010. It is also found that over 90 percent of those active volcanoes took place in the circum-Pacific volcanic belt, which is commonly called 'Ring of Fire'. This status coincides with the distribution maps of active volcanoes on the earth: about 80 percent on subduction zone of the convergence of lithospheric plate; 15 percent on spreading zone; 5 percent on intra-plate zone. The period given in this research during 350 weeks, the following three volcanoes showed a frequency of more than 300 times eruption: Kilauea(Hawaii, USA, 338 times), Sheveluch(Kamchatka, Russia, 337 times), and Aira(Kyushu, Japan, 301 times). According to the survey conducted during the given period, there is no conspicuous increase in the frequency of volcano activities. It rather shows that volcanic eruptions took place almost evenly every year.

Selecting Hazardous Volcanoes that May Cause a Widespread Volcanic Ash Disaster to the Korean Peninsula (한반도에 광역화산재 재해를 발생할 수 있는 위험화산의 선정)

  • Yun, Sung-Hyo;Choi, Eun-Kyeong;Chang, Cheolwoo
    • Journal of the Korean earth science society
    • /
    • v.37 no.6
    • /
    • pp.346-358
    • /
    • 2016
  • This study built the volcano Data Base(DB) of 289 active volcanoes around the Korean Peninsula, Japan, China (include Taiwan), and Russia Kamchatka area. Twenty nine more hazardous volcanoes including Baekdusan, Ulleungdo and 27 Japanese volcanoes that can cause a widespread ash-fall on the Korean peninsula by potentially explosive eruption were selected. This selection was based on the presence of volcanic activity, whether or not containing dangerous explosive eruption rock types, distance from Seoul, and volcanoes having Plinian eruption history with volcanic explosivity index (VEI) 4 or more. The results of this study are utilized for screening high-risk volcanoes that may affect the volcanic disaster caused by a widespread fallout ash. By predicting the extent of spread of ash caused by these hazardous volcanic activities and by analyzing the impact on the Korean peninsula, we suggest that it should be used for helping to predict volcanic ash damages and conduct hazards mitigation research as well.