• Title/Summary/Keyword: 화강암류

Search Result 414, Processing Time 0.028 seconds

Gas and Fluid Inclusion Studies of the Granitic and Rhyolitic Rocks From the Bupyeong Silver Mine Area (부평 은광산 지역의 유문암질암과 화강암류의 가스 및 유체포유물 연구)

  • Kim, Kyu Han;Ha, Woo Young
    • Economic and Environmental Geology
    • /
    • v.30 no.6
    • /
    • pp.519-529
    • /
    • 1997
  • Volcanic rocks including rhyolitic tuff, rhyolite and welded tuff in the Bupyeong silver mine area form a topographic circular structure which is interpreted as a resurgent caldera. Granitic rocks are emplaced inside and outside area of the circular structure. Pervasive silver mineralization took place in the rhyolitic rock of the southwestern margin of the caldera. Gas and fluid incluson studies were carried out to investigate the petrogenetic evolution and post-magmatic alteration for the rhyolitic and granitic rocks. Gas compositions are characterized by a low $CH_4/CO_2$ ratio (0.004-0.005) for rhyolitic and inside granitic rocks and a high $CH_4/CO_2$ ratio (0.01~0.29) for outside granitic rocks such as the Kimpo and Incheon granites. Homogenization temperature of solid daughter mineral bearing fluid inclusion (III and IV types) and two phase fluid inclusion (I and II types) for quartz in the Bupyeong granites range from 400 to $500^{\circ}C$ and 121 to $514^{\circ}C$, respectively. Salinties vary from 20 to 30 wt% NaCl for type III and IV inclusions and less than 20 wt % NaCl for type I and II inclusions. The fluid inclusion data shows a considerable influx of the meteoric water toward post magmatic alteration stage.

  • PDF

Condition of the Sangdong Tungsten Skarn Formation (상동 중석 스카른의 생성조건에 관한 연구)

  • Moon, Kun Joo
    • Economic and Environmental Geology
    • /
    • v.17 no.4
    • /
    • pp.259-272
    • /
    • 1984
  • Fluid inclusion and stable isotope studies on the Sangdong tungsten skarn have led to a conclusion that the mineralizing fluids might be derived from a magma, which was inferred within 1km below the present Sangdong ore deposit. Mineral assemblages of the skarns appear to have formed under the equilibrium conditions as the fluids flow outward from a central fluid column, in which the quatz-mica occurs dominantly. A characteristic skarn showing mineralogical zonation by repeated over-prints. The quartz-mica zone at the central part of the Sangdong skarns shows the final stage of protracted fluid evolution. Thermodynamic conclusion based on simplified chemical compositions of major components may express quantitatively the conditions of the skarn formation by using diagrams.

  • PDF

Nd Model Age and Nd Isotopic Evidence of Granitoid Rocks in the Gwangju-Naju Area, Korea (광주-나주지역 화강암류에 대한 네오디움 표본연령 및 동위원소 특성연구)

  • Park, Young Seog
    • Economic and Environmental Geology
    • /
    • v.30 no.2
    • /
    • pp.153-161
    • /
    • 1997
  • Diagrams of $^{87}Sr/^{86}Sr$ versus Ba/Nb and MgO/FeO are scattered, and $^{87}Sr/^{86}Sr$ variation with the increase of $SiO_2$ are scattered in Gwangju granitoid. Diagrams of $(^{87}Sr/^{86}Sr)$i versus $(^{143}Nd/^{144}Nd)$i and ${\varepsilon}Nd$ versus 1/Nd variation are also scattered in Gwangju granitoid. It shows that the source magma of Gwangju granitoid are derived from partial melting materials of heterogeneous upper crust. Very low ${\varepsilon}Nd$ values (-15.19~-19.49) and very high ${\varepsilon}Sr$ values (92.72~308.85) mean that the source magma of Gwangju granitoid is derived from sedimentary substance melting. According to $(^{87}Sr/^{86}Sr)$ 180Ma, and the plot of ${\varepsilon}Sr$ versus ${\varepsilon}Nd$, the Gwangju granitoid shows that the source magma is derived from upper crust materials. Nd model ages of Gwangju granitoid (1.82~2.42G.A.) are older than meta-sediments of Okcheon formation (1.15~1.60G.A.) and similar or close to Pre-Cambrian gneiss complex of Ryoungnam massif (2.17~2.47G.A.or 2.11~2.38G.A.).Therefore, the source magma of the Gwangju granitoid could be derived from the partial melting of Pre-Cambrian gneiss complex of Ryoungnam massif.

  • PDF

Estimation of Tunnel Convergence Using Statistical Analysis (통계처리를 활용한 터널 내공변위의 분석에 관한 연구)

  • 김종우
    • Tunnel and Underground Space
    • /
    • v.13 no.2
    • /
    • pp.108-116
    • /
    • 2003
  • Measured convergence data of a tunnel were investigated by means of statistical and regression analysis, where the rock mass were mainly composed of andesite and granite. The rock mass around tunnel were classified by RMR method into five different ratings, and then convergence data which belong to individual ratings were statistically processed to find out the appropriate regression equations. Exponential equations were better coincided with measured data than logarithmic equations. As the number of rock mass rating was increased, the magnitude and standard deviation of convergence were increased. Final convergence data were also investigated to study the relevance with both maximum displacement rate and early measured convergence. Some brief results of their relevance are presented. For instance, the regression coefficient between final convergence and maximum displacement rate was turned out to be 0.87 for this studied tunnel.

Geochemical Study of Some Mesozoic Granitic Rocks in South Korea (남한의 일부 중생대 화강암류의 지구화학적 연구)

  • Kim, Kyu Han
    • Economic and Environmental Geology
    • /
    • v.25 no.4
    • /
    • pp.435-446
    • /
    • 1992
  • REE, major and trace elements analyses of the Jurassic Daebo granite and Cretaceous Bulguksa granite were carried out to interpet their petrogenesis and relationships between petrogenesis and tectonics. Analytical results are summarized as follows. (1) $SiO_2$ content of the Bulguksa granite (aver. 74.6%) are significantly higher than those of the Daebo granite (aver. 68.1%). Major elements of $TiO_2$, $Al_2O_3$, $P_2O_5$, CaO, MgO, Total FeO, and trace elements of Co, V and Sr are negatively correlated with $SiO_2$. Incompatible elements such as Ba, Sr, Y, Zr and HREE are contained differently in the Bulguksa granites distributed in between Okchon folded belt and Kyongsang sedimentary basin. (2) Trace element abundances show a good discrimination between two goups of granitic rocks. Ba, Sr and V are enriched in Daebo granites, while Zn and Cr are depleted in them. (3) Jurassic granites have quite different Eu anomalies and REE patterns from those of Cretaceous granites: Large negative Eu anomaly in the former and mild or absent Eu anomaly in the latter. The large Eu negative of Cretaceous granitic rocks are interpreted as a differentiated product of fractional crystallization of granitic magma from the upper mantle. Meanwhile, the Daebo plutonic rocks was resulted from the partial melting of subcrustal material or crustal contamination during ascending granitic magma from the mantle. Senario of igneous activities of Mesozoic age in South Korea was proposed based on Kula-Pacific ridge subduction model.

  • PDF

Oxygen and Hydrogen Isotope Studies of the Hydrothermal Clay Deposits and Surrounded Rocks in the Haenam Area, Southwestern Part of the Korean Peninsula (한국 서남부, 해남지역의 열수 점토광상과 주변암에 대한 산소 및 수소동위원소 연구)

  • Kim, In Joon;Kusakabe, Minoru
    • Economic and Environmental Geology
    • /
    • v.26 no.1
    • /
    • pp.11-20
    • /
    • 1993
  • In the present study, three representative hydrothermal clay deposits, named the Seongsan, Ogmaesan and Haenam deposits, were selected for oxygen and hydrogen isotope studies. Oxygen and hydrogen isotopic compositions of quartz, sericite, alunite and kaolin minerals from Seongsan, Ogmaesan, Haenam deposits and surrounded rocks of clay deposits have been measured. The ${\delta}^{18}O$ values of quartz, kaolin, sericite and alunite in the Seongsan mine are +8.4 to +11.1‰, +3.6 to 5.4‰, +4.8 to +5.8‰ and + 3.0 to +6.6‰, respectively. In the Ogmaesan mine, the ${\delta}^{18}O$ values of quartz, kaolin, sericite and alunite are +8.0 to +13.6‰, +2.8 to +6.7‰, +4.8 to +8.4‰ and +0.9 to +2.4‰, respectively. The ${\delta}^{18}O$ values of the Haenam mine range from +7.9 to +10.1‰ for quartz and from +4.5 to +6.5‰ for sericite. The ${\delta}^{18}O$ values of the whole-rocks range from + 3.0 to + 7.8‰ for the granitic rocks. The ${\delta}^{18}O$ values of the whole-rocks range from + 3.2 to + 10.7‰ for the volcanic rocks. The 8D values of kaolin, sericite and alunite in the Seongsan mine are -78 to -86‰, -71 to -90‰ and -43 to -77‰, respectively. In the Ogmaesan mine, the ${\delta}D$ values of kaolin, sericite and alunite are -73 to -80‰, -74 to -88‰ and -57 to -98‰, respectively. The ${\delta}D$ values of the Haenam mine range from -76 to -85‰ for sericite. The ${\delta}D$ values of the whole-rocks range from -77 to -105‰ for the granitic rocks. The ${\delta}D$ values of the wholerocks range from -76 to -100‰ for the volcanic rocks. The main result obtained oxygen and hydrogen isotope data can lead to the following interpretations on the origin of hydrothermal fluids in the clay deposits: Through the oxygen isotopic study, the formation temperature of the clay deposits was estimated from the coexisting minerals such as quartz-kaolin minerals and -sericite. Formation temperature of the acidic alteration zone is 165 to $280^{\circ}C$ in the Seongsan deposits, 175 to $250^{\circ}C$ in the Ogmaesan deposits and 250 to $350^{\circ}C$ in the Haenam deposits. Three clay deposits has been formed by magmatic water mixed with meteoric water. Furthermore, from this isotopic data, it is clarified that kaolin minerals and alunite are hypogene in origin, and has been formed by oxidation of hydrogen sulfide in the steam-heated environment, and that alunite has been produced in the spectacular solfataric alteration observed at the surface of some present-day hydrothermal systems. Oxidation of the $H_2S$ is thought to be generated when the vapor phase generated by boiling of the deep-seated water under the water table.

  • PDF

Geometrical Interpretation on the Development Sequence and the Movement Sense of Fractures in the Cheongsong Granite, Gilan-myeon Area, Uiseong Block of Gyeongsang Basin, Korea (경상분지 의성지괴 길안면지역에서 청송화강암의 단열 발달사 및 운동성에 대한 기하학적 해석)

  • Kang, Ji-Hoon;Ryoo, Chung-Ryul
    • The Journal of the Petrological Society of Korea
    • /
    • v.15 no.4 s.46
    • /
    • pp.180-193
    • /
    • 2006
  • The Gilan area in the central-northern part of Uiseong Block of Cretaceous Gyeongsang Basin is composed of Precambrian metamorphic rocks, Triassic Cheongsong granite, Early Cretaceous Hayans Group, and Late Cretaceous-Paleocene igneous rocks. In this area, the faults of various directions are developed: Oksan fault of $NS{\sim}NNW$ trend, Gilan fault of NW trend, Hwanghaksan fault of WNW trend, and Imbongsan fault of EW trend. Several fracture sets with various geometric indicators, which determine their relative timing (sequence and coexistence relationships) and shear sense, we well observed in the Cheongsong granite, the basement of Gyeongsang Basin. The aim of this study is to determine the development sequence of extension fractures and the movement sense of shear fractures in the Gitan area on the basis of detailed analysis of their geometric indicators (connection, termination, intersection patterns, and cross-cutting relations). This study suggests that the fracture system of the Gilan area was formed at least through seven different fracturing events, named as Pre-Dn to Dn +5 phases. The orientations of fracture sets show (W) NW, NNW, NNE, EW, NE in descending order of frequency. The orientation and frequency patterns are concordant with those of faults around and in the Gilan area on a geological map scale. The development sequence and movement sense of fracture sets are summarized as follows. (1) Pre-Dn phase: extension fracturing event of $NS{\sim}NNW$ and/or $WNW{\sim}ENE$ trend. The joint sets of $NS{\sim}NNW$ trend and of $WNW{\sim}ENE$ trend underwent the reactivation histories of sinistral ${\rightarrow}$dextral${\rightarrow}$sinistral shearing and of (dextral${\rightarrow}$) sinistral shearing with the change of stress field afterward, respectively. (2) Dn phase: that of NW trend. The joint set experienced the reactivations of sinistral${\rightarrow}$dextral shearing. (3) Dn + 1 phase: that of $NNE{\sim}NE$ trend. The joint set was reactivated as a sinistral shear fracture afterward. (4) Dn +2 phase: that of $ENE{\sim}EW$ trend. (5) Dn +3 phase: that of $WNW{\sim}NW$ trend. (6) Dn+4 phase: that of NNW trend. The joint set underwent a dextral shearing after this. (7) The last Dn +5 phase: that of NNE trend.

Geological Structure of Precambrian to Paleozoic metasedimentary rocks in the Janggunbng area, Korea -Crustal evolution and environmental geology of the central part of the North Sobaegsan Massif, Korea- (장군봉지역 선캠브리아대-고생대 변성퇴적암류의 지질구조 -북부 소백산육괴의 중앙부지역의 지각진화와 환경지질)

  • Gang, Ji Hun;Kim, Hyeong Sik;O, Se Bong
    • The Journal of the Petrological Society of Korea
    • /
    • v.6 no.3
    • /
    • pp.244-244
    • /
    • 1997
  • The Janggunbong area(this study area) at the central-south part in the North Sobaegsan Massif, Korea, consists mainly of Precambrian(Wonnam and Yulri Formations)-Paleozoic [Joseon Supergroup(Jangsan Quarzite, Dueumri Formation and Janggum Limestone) and Pyeongan Group(Jaesan and Dongsugok Formations)] metasedimentary rocks and Mesozoic granitoid(Chunyang granite.) This study is to interpret geological structure of the North Sobaegsan Massif in the Jang-gunbong area by analysing rock-structure and microstructure of the constituent rocks. It indicates that its geological structure was formed at least by four phases of deformation after the formation of gneissosity(S0) in the Wonnam Formation and bedding plane(S0) in the Paleozoic metasedimentary rocks. The first phase deformation(D1) formed tight isoclinal fold(F1). Its axial plane(S1) strikes east-west and steeply dips north. Its axis (L1) subhorizontally plunges east-west. The second phase deformation(D2), which was related to ductile shear deformation, formed stretching lineation(L2) and shear foliation(S2). The sense of the shear movement indicates dextral strike-slip shearing(top-to-the east shearing). The third phase deformation(D3) formed open inclined fold(F3). Its axial plane(S3) strikes east-west and moderately or gently dips north. Its axis(L3) subhorizontally plunges east-west. The F3 fold reoriented the original north-dipping S1 foliation and D2 shear sense into south-dipping S1 foliation(top-to-the west shear sense on this foliation) at its a limb. The four phase of deformation(D4) formed asymmetric-type open inclined fold(F4) of NE-vergence with NW striking axial plane(S4) and NW-NNW plunging axis(L4). The F4 fold partly reoriented pre-D4 structural elements with east-west trend into those with north-south trend. Such reorientation is recognized mainly in the Paleozoic metasedimentary rocks.

Geological Structure of Precambrian to Paleozoic metasedimentary rocks in the Janggunbong area, Korea-Crustal evolution and environmental geology of the central part of the North Sobaegsan massif, Korea- (장군봉지역 선캠브리아대-고생대 변성퇴적암류의 지질구조-북부 소백산육괴의 중앙부지역의 지각진화와 환경지질)

  • 강지훈;김형식;오세봉
    • The Journal of the Petrological Society of Korea
    • /
    • v.6 no.3
    • /
    • pp.224-259
    • /
    • 1997
  • The Janggunbong area(this study area) at the central-south part in the North Sobaegsan Massif, Korea, consists mainly of Precambrian(Wonnam and Yulri Formations)-Paleozoic [Joseon Supergroupuangsan Quarzite, Dueumri Formation and Janggun Limestone) and Pyeongan Group (Jaesan and Dongsugok Formations)l metasedimentary rocks and Mesozoic granitoid(Chunyang granite). This study is to interpret geological structure of the North Sobaegsan Massif in the Janggunbong area by analysing rock-structure and microstructure of the constituent rocks. It indicates that its geological structure was formed at least by four phases of deformation after the formation of gneissosity(S0) in the Wonnam Formation and bedding plane(S0) in the Paleozoic metasedimentary rocks. The first phase deformation(D1) formed tight isoclinal fold(F1). Its axial plane(S1) strikes east-west and steeply dips north. Its axis(L1) subhorizontally plunges east-west. The second phase deformation(D2), which was related to ductile shear deformation, formed stretching lineation(L2) and shear foliation(S2). The sense of the shear movement indicates dextral strike-slip shearing(topto-the east shearing). The third phase deformation(D3) formed open inclined fold(F3). Its axial plane(S3) strikes east-west and moderately or gently dips north. Its axis(L3) subhorizontally plunges east-west. The F3 fold reoriented the original north-dipping S1 foliation and D2 shear sense into south-dipping S1 foliation(top-to-the west shear sense on this foliation) at its a limb. The four phase of deformation(D4) formed asymmetric-type open inclined fold(F4) of NE-vergence with NW striking axial plane(%) and NW-NNW plunging axis(L4). The F4 fold partly reoriented pre-D4 structural elements with east-west trend into those with north-south trend. Such reorientaion is recognized mainly in the Paleozoic metasedimentary rocks.

  • PDF

Petrochemistry and Geologic Structure of Icheon Granitic Gneiss around Samcheog Area, Korea (삼척지역 이천화강편마암의 암석화학과 지질구조)

  • Cheong Won-Seok;Cheong Sang-Won;Na Ki-Chang
    • The Journal of the Petrological Society of Korea
    • /
    • v.15 no.1 s.43
    • /
    • pp.25-38
    • /
    • 2006
  • Metamophic rocks of Samcheog area, northeastern Yeongnam massif, was studied petrochemically. This area includes Precambrian Hosanri Formation (schists and gneisses) and granitoid (Icheon granitic gneiss, leucocratic granite and Hongjesa granite), Cambrian sedimentary rocks, and Cretaceous sedimentary and acidic volcanic rocks. Hosanri formation is composed of quartz+plagioclase+K-feldspar+biotite+muscovite+granet${\pm}$cordierite${\pm}$sillimanite. Mineral assemblage of biotite granitic gneiss, which is massive granodioritic rock with weak foliation, is similar to Hosanri formation. According to mineral assemblages, metamorphic rocks of studied area can be divided into two metamorphic zones (garnet and sillimanite zones). From Icheonri area, major, trace and rare earth element data of biotite granitic gneiss and luecocratic granite suggest that source rock is politic rocks of Hosanri formation and source magma was formed by anatexis and experienced fractionation of plagioclase. Trace element diagram show collisional environment such as syn-collisional, volcanic arc granite. Orientation of faults in study area have three maximum concentrations, $N54^{\circ}\;W/77^{\circ}\;SW,\;N49^{\circ}\;W/81^{\circ}\;NE\;and\;N10^{\circ}\;W/38^{\circ}\;NE$. Structure analysis suggests that faults in study area ware formed by uplift and compression. Faulting age is guessed after Tertiary because some shear joints is developed in dikes to intrusive Cretaceous acidic volcanic rock. Hosanri formation and Icheon granitic gneiss had experienced similar deformation history because they have maximum concentration to foliations, $N89^{\circ}\;E/55^{\circ}\;SE\;and\;N80^{\circ}\;E/45^{\circ}\;SE$, respectively.