Nd Model Age and Nd Isotopic Evidence of Granitoid Rocks in the Gwangju-Naju Area, Korea

광주-나주지역 화강암류에 대한 네오디움 표본연령 및 동위원소 특성연구

  • Received : 1997.02.20
  • Published : 1997.04.28

Abstract

Diagrams of $^{87}Sr/^{86}Sr$ versus Ba/Nb and MgO/FeO are scattered, and $^{87}Sr/^{86}Sr$ variation with the increase of $SiO_2$ are scattered in Gwangju granitoid. Diagrams of $(^{87}Sr/^{86}Sr)$i versus $(^{143}Nd/^{144}Nd)$i and ${\varepsilon}Nd$ versus 1/Nd variation are also scattered in Gwangju granitoid. It shows that the source magma of Gwangju granitoid are derived from partial melting materials of heterogeneous upper crust. Very low ${\varepsilon}Nd$ values (-15.19~-19.49) and very high ${\varepsilon}Sr$ values (92.72~308.85) mean that the source magma of Gwangju granitoid is derived from sedimentary substance melting. According to $(^{87}Sr/^{86}Sr)$ 180Ma, and the plot of ${\varepsilon}Sr$ versus ${\varepsilon}Nd$, the Gwangju granitoid shows that the source magma is derived from upper crust materials. Nd model ages of Gwangju granitoid (1.82~2.42G.A.) are older than meta-sediments of Okcheon formation (1.15~1.60G.A.) and similar or close to Pre-Cambrian gneiss complex of Ryoungnam massif (2.17~2.47G.A.or 2.11~2.38G.A.).Therefore, the source magma of the Gwangju granitoid could be derived from the partial melting of Pre-Cambrian gneiss complex of Ryoungnam massif.

Keywords

Acknowledgement

Supported by : 한국학술진흥재단