• Title/Summary/Keyword: 혼합 냉매

Search Result 156, Processing Time 0.021 seconds

Correlation of Convective Boiling Heat Transfer in a Horizontal Tube for Pure Refrigerants and Refrigerant Mixtures (순수 및 혼합냉매의 유동증발 열전달 상관식)

  • Shin, J.Y.;Kim, M.S.;Ro, S.T.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.8 no.2
    • /
    • pp.254-266
    • /
    • 1996
  • Boiling heat transfer coefficients of pure refrigerants(R22, R32, R125, R134a, R290, and R600a) and refrigerant mixtures(R32/R134a and R290/R600a) are measured experimentally and compared with several correlations. Convective boiling term of Chen's correlation predicts experimental data for pure refrigerants fairly well(root-mean-square error of 12.1% for the quality range over 0.2). An analysis of convective boiling heat transfer of refrigerant mixtures is performed for an annular flow to study degradation of heat transfer. Annular flow is the subject of this analysis because a great portion of the evaporator in refrigeration or air conditioning system is known to be in the annular flow regime. Mass transfer effect due to composition difference between liquid and vapor phases, which is considered as a driving force for mass transfer at interface, is included in this analysis. Correction factor $C_F$ is introduced to the correlation for the pure substances through annular flow analysis to apply the correlation to the mixtures. The flow boiling heat transfer coefficients are calculated using the correlation considering nucleate boilling effect in the low quality region and mass transfer effect for nonzazeotropic refrigerant mixtures.

  • PDF

A Study on Performance Characteristics of Propane/Isobutane Refrigerant Mixtures in a Domestic Small Multi-Refrigeration System (프로판/이소부탄(R-290/R-600a) 혼합 냉매를 적용한 가정용 소형 멀티 냉동시스템의 성능특성에 관한 연구)

  • Kim Sanguk;Lee MooYeon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.2 s.233
    • /
    • pp.271-278
    • /
    • 2005
  • In this paper, the performance of Kim-chi refrigerator with three evaporator and one compressor was investigated in employing $55\%$ propane and $45\%$ isobutane (R290/R600a) refrigerant mixture as an alternative refrigerant of R134a. The drop-in test was performed by varying both refrigerant charge and capillary tube length in order to find both the performance and reliability of a small multi-refrigeration system. Results show that the power consumption is decreased by about $15\%$ and COP is increased by about $10\%$, respectively as compared to the baseline system using R-134a. In addition, the propane/isobutane refrigerant mixture system took advantage of the minimization of modification and redesigning of system components because thermodynamic properties such as saturation pressure, temperature, normal boiling point(NBP) characteristics are similar to those of R134a. The reduction of sales cost is caused by the decrease of refrigerant cost per unit mass and refrigerant charge amount necessary for the refrigeration system.

An experimental study on nucleate boiling of ternary refrigerant R407C (삼중 혼합 냉매 R407C의 핵비등 열전달 특성에 관한 실험적 연구)

  • Kim, S.H.;Kwak, K.M.;Bai, C.H.;Chung, M.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.9 no.3
    • /
    • pp.276-283
    • /
    • 1997
  • The nucleate boiling heat transfer experiments are performed using a ternary refrigerant R407C which is a candidate of alternatives of HCFC 22. The boiling phenomena for R-32, R-125, and R-134a which are the constituent refrigerants of R407C are also investigated to give the foundation of theoretical research for the mixture component boiling. The nucleate boiling heat transfer coefficients of R407C is less than those of HCFC 22 which has the similar physical and transport properties. Since the experimental results show the deterioration of boiling heat transfer coefficients of ternary mixture refrigerants R407C, the boiling heat transfer coefficients of R407C cannot be obtained by the linear combination of boiling heat transfer coefficients from its constituent components R-32, R125, and R134a.

  • PDF

A Study on Forced Convective Boiling Heat Transfer of Non-Azeotropic Refrigerant Mixture R134a/R123 Inside Horizontal Smooth Tube (수평 전열관내 비공비 혼합냉매 R134a/R123의 강제대류비등 열전달에 관한 연구)

  • Lim, Tae-Woo;Han, Kyu-Il
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.3
    • /
    • pp.381-388
    • /
    • 2003
  • An experimental study was carried out to measure the heat transfer coefficient in flow boiling to mixtures of HFC-l34a and HCFC-123 in a uniformly heated horizontal tube. Tests were run at a pressure of 0.6 MPa and in the ranges of heat flux 1-50 kw/$m^2$, vapor quality 0-100 % and mass velocity 150-600 kg/$m^2$s. Heat transfer coefficients of mixture were less than the interpolated values between pure fluids both in the low quality region where the nucleate boiling is dominant and in the high quality region where the convective evaporation is dominant. Measured data of heat transfer are compared to a few available correlations proposed for mixtures. The correlation of Jung et. al. satisfactorily predicted the present data, but the data in lower quality was overpredicted and underpredicted the high quality data. The correlation of Kandlikar considerably underpredicted most of the data. and showed the mean deviation of 35.1%.

Experimental study on convective boiling heat transfer for pure refrigerants and refrigerant mixtures in a horizontal tube (순수 및 혼합냉매의 원관내 증발열전달 실험)

  • Sin, Ji-Yeong;Kim, Min-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.2
    • /
    • pp.730-740
    • /
    • 1996
  • Boiling heat transfer coefficients of pure refrigerants (R22, R32, R134a, R125, R290, and R600a) and refrigerant mixtures (R32/Rl34a, R290/ R600a, and R32/R125) are measured experimentally and compared with Chen's correlation. The test section is a seamless stainless steel tube with inner diameter of 7.7mm and uniformly heated by applying electric current directly to the tube. Heat fluxes range from 10 to 30kW$^2$. Mass fluxes are set to 424 ~ 742kg/m$^{2}$s for R22, R32, R134a, R32/R134a, and R32/Rl25 ; 265 ~ 583kg/m$^{2}$s for R290, R600a, and R290/R600a. Heat transfer coefficients depend strongly on heat flux at a low quality region and become independent as quality increases. Convective boiling term in the Chen's correlation predicts experimental data of the pure refrigerants fairly well (relative error of 12.1% for the data of quality over 0.2). The correlation for pure substances overpredicts the heat transfer coefficients for nonazeotropic refrigerant mixtures.

Study on the pressure drop of ternary refrigerant R-407c during condensation inside horizontal micro-fin tubes (3성분 혼합냉매 R-407c의 수평 마이크로핀관내 응축압력강하에 관한 연구)

  • 정재천
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.2
    • /
    • pp.210-218
    • /
    • 1998
  • Experimental results for forced convection condensationof Refrigerant-22 and ternary Refrigerant-407c(HFC-32/125/134a 23/25/52 wt%) considered as a substitute R-22 inside horizontal micor-fin tubes are presented. The test section was horizontal double-tubed counterflow condenser with a length 4000 mm micro-fin tube having 9.53 mm OD., 0.2 mm fin height and 60 fins. The refrigerants R-22 and R-407c were cooled by a coolant circulated in a surrounding annulus. The range of parameters of mass velocity was varied from 102.1 to 301.0kg/($\textrm{m}^{2}.s$) with inlet quality 1.0. Both refrigerant R-22 and its alternative refrigerant R-407c were tested within the same range of parameters. At the given experimental conditions for R-22 and R-407c the pressure drops for R-407c were considerably higher than those for R-22 at micro-fin tubes. Over the mass velocity range tested the PF(penalty factor)was lower than the increasing ratio of heat transfer area by fins. Based on the data correlation was proposed for predicting the frictional pressure drops for R-22 and R-407c for a duration of condensation inside a horizontal micro-fin tube.

  • PDF

Condensing Performance Evaluation in Smooth and Micro-Fin Tubes for Natural Mixture Refrigerant (Propane/Butane) (프로판/부탄 혼합자연냉매의 평활관과 마이크로핀관 내의 응축성능평가)

  • Lee Sang-Mu;Lee Joo-Dong;Park Byung-Duck
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.9
    • /
    • pp.816-823
    • /
    • 2005
  • This paper deals with the heat exchange performance prediction of a counter flow type double-tube condenser for natural refrigerant mixtures composed of Propane/n-Butane or Propane/i-Butane in a smooth tube and a micro-fin tube. The local characteristics of heat transfer, mass transfer and pressure drop are calculated using a prediction method developed by the authors. The total pressure drop and the overall heat transfer coefficient are also evaluated on various heat exchange conditions. The calculated results of the natural refrigerant mixtures are compared with HCFC22. In conclusion, natural refrigerant mixtures composed of Propane/n-Butane or Propane/i-Butane are appropriate candidates for alternative refrigerant from the viewpoint of heat transfer characteristics.

Experimental studies on the evaporative heat transfer of R32/290 mixtures in a horizontal smooth tube (평활관 내 R32/290 혼합냉매의 증발열전달 특성에 관한 실험적 연구)

  • Cho, Jin-Min;Kim, Ju-Hyok;Yoon, Seok-Ho;Kim, Min-Soo
    • Proceedings of the SAREK Conference
    • /
    • 2005.11a
    • /
    • pp.268-273
    • /
    • 2005
  • Because of environmental issues caused by CFC, HCFC or HFC refrigerants, new alternative refrigerants has gained a significant attention. This paper presents experimental information on heat transfer coefficient and pressure drop behavior during evaporation process of R32/290 mixtures in a horizontal smooth tube. A smooth tube with outer diameter of 5 mm and length of 5 m was selected as a test tube. Heat transfer coefficients and pressure drop characteristics were measured for a range of mass fluxes from 497 to 994 $kg/m^2s$, heat fluxes from 12 to 20 $kW/m^2$ and for several mixture compositions(100/0, 75/25, 58.4/41.6, 2s/75, 100/0 by wt% of R32/290). The differences of measured heat transfer characteristics among various R32/290 refrigerant mixtures were analyzed for various compositions.

  • PDF

An experimental investigation of thermodynamic performance of R-22 alternative blends (R-22 대체용 혼합냉매의 열역학적 성능에 대한 실험연구)

  • Hwang, E.P.;Kim, C.N.;Park, Y.M.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.9 no.1
    • /
    • pp.82-91
    • /
    • 1997
  • R-410a and R-407c witch have the best potential among the substances being considered as R-22 alternatives were tested as "drop in" refrigerants against a set R-22 baseline tests for comparison. The performance evaluations were carried out in a psychrometric calorimeter test facility using the residential split-type air conditioner under the ARI rating conditions. Other than the use of different lubricant and a hand-operated expansion valve, one of the commercial systems was selected for the experiment. Performance characteristics were measured; compressor power, capacity, VCR, mass flow rate and COP. The tests showed that R-407c can be directly applied to the existing refrigeration system because of its similar vapor pressure and other thermopysical properties with those of R-22. However, it required change to the volume flow rate of compressor in order to achieve the similar performance with R-22 because of its relatively small VCR and capacity. Meanwhile, R-410a has too high a vapor pressure to be applied to the existing system and this feature results in relatively low COP of the system compared to that of R-22. But this could be improved by changing compressor design considering R-410a's relatively high VCR and capacity compared to those of R-22.

  • PDF

A Study on the Determination of Mixed Refrigerant for the Joule-Thomson Cryocooler (극저온 Joule-Thomson 냉동기용 혼합냉매 결정에 관한 연구)

  • 이경수;장기태;정상권
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.10
    • /
    • pp.901-907
    • /
    • 2000
  • The conceptual determination of mixed-refrigerant (MR) for a closed Joule-Thomson cryocooler is described in this paper. The thermodynamic cycle design was mainly considered to develop a cryocooler by using a compressor of domestic air-conditioning unit. The target cooling performance of the designed cryocooler is 10 W around 70 K with less than 5 kJ/kg enthalpy rise. The systematic approach of choosing a proper refrigerant among 20 different kinds of mixture for such cryogenic temperature was introduced in detail. The main components of the cryocooler are compressor, evaporator, oil separator, after-cooler, counterflow heat exchanger, and J-T expansion device. Due to the limitation of the compressor operation range, the temperature after the compression was limited below $117^{\circ}C$ (390 K) and the temperature before compression was restricted above $5^{\circ}C$ (278 K). 20 atm of discharging pressure (high pressure) and less than 3 atm suction pressure (low pressure) were the design conditions. The inlet temperature of a counterflow heat exchanger in the high Pressure side was about 300 K. The proper composition of the mixed refrigerant for the designed J-T cryocooler is 15% mol of$ N_2, 30% mol of $CH_4,\; 30% mol\; of C^2H^ 6,\; 10%\; mol\; of\; C_3H_8\; and \;15%\; mol\; of\; i-C_4H_10$.

  • PDF