• Title/Summary/Keyword: 혼합코팅

Search Result 399, Processing Time 0.028 seconds

Sol-Gel reaction by various Colloidal Silicas and Silanes (여러 종류의 Colloidal Silica와 실란에 의한 졸겔반응)

  • Kang, Dong-Pil;Park, Hoy-Yul;Ahn, Myeong-Sang;Myung, In-Hye;Lee, Tae-Ju
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07a
    • /
    • pp.82-85
    • /
    • 2004
  • Colloidal Silica(CS) HSA/2327과 methyltrimethoxysilane(MTMS), 1034A와 tetramethoxysilane(TMOS)/MTMS 간의 졸겔 반응조건이 코팅도막의 특성에 미치는 영향을 조사하기 위하여 CS종류, CS 대비 TMOS/MTMS의 함량비, 반응시간 등을 달리하여 졸을 합성하고, 합성된 졸을 slide glass에 코팅한 후 $300^{\circ}C$에서 경화시킨 도막의 특성들을 조사하였다. HSA/2327/MTMS에 의한 졸로부터 제조된 코팅도막은 졸 반응시간 의존성이 거의 없으며 반응초기부터 접촉각이 상당히 안정되어 있고 특히 낮은 MTMS 함량을 가진 졸들이 더욱 안정된 표면물성을 보였다. 1034A/TMOS/MTMS에 의해서 제조된 코팅도막은 적절한 소수성의 형성과 표면조도의 향상과 더불어 안정된 접촉각 양상을 나타내었다. 표면거칠기는 HSA/2327 혼합 CS계에 의해서는 반응시간이 길고 MTMS 함량이 높아질 때 비교적 표면조도가 나빠지는데 반응시간과 더불어 약간씩 증가하는 경향을 보였다. 1034A CS계에서는 반응시간과 MTMS 함량의 조건에 영향을 받지 않고 표면조도와 균질성이 우수하였다.

  • PDF

Thermal conductivity of acrylic composite films containing graphite and carbon nanotube (흑연과 탄소나노튜브를 함유한 아크릴 복합체 박막의 열전도도)

  • Kim, Jun-Yeong;Gang, Chan-Hyeong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.185-185
    • /
    • 2016
  • 아크릴계 수지(resin)에 인조 흑연과 탄소나노튜브(carbon nanotube)를 1:1 비율로 혼합한 충전제(filler)와 용제(solvent) 및 기타 첨가제(additives)를 혼합하여 방열도료를 제조하여 수직방향 열전도도를 상온에서 평가하였다. 충전제의 함량을 1, 2, 5 중량 %로 변화시키며 원료들을 준비하여 교반기로 혼합한 뒤 3단 롤 밀(three roll mill)로 분산공정을 진행하여 3 종류의 도료를 제조하였다. 제조한 도료를 가로 11 mm, 세로 11 mm, 두께 0.4 mm의 Al 5052 알루미늄 기판에 스프레이 코팅 방식으로 도포한 후 $150^{\circ}C$에서 30분 동안 열경화 건조 과정을 거쳐 샘플을 제작하였다. 측정 시료의 형상은 대략적으로 Fig. 1과 같다. 열전도도는 식 $k={\alpha}{\cdot}C_p{\cdot}{\rho}$를 사용해서 계산된다. 여기서 k는 열전도도($W/m{\cdot}K$), ${\alpha}$는 열확산계수($mm^2/s$), $C_p$는 비열($J/kg{\cdot}K$), ${\rho}$는 밀도($g/cm^3$)를 나타낸다. 열확산계수는 독일 NETZSCH 사의 Laser Flash Analysis 장비(모델명 LFA 457)를 사용하여 측정하였는데, 기판 뒤쪽에서 레이저를 조사하고 도료층 전면에서 적외선 온도센서를 통해 시간에 따른 온도 상승곡선을 구한 후, 두 물체의 계면에서의 접촉 열저항(contact thermal resistance)을 감안하여 장비에 내장되어 있는 소프트웨어로 열확산계수가 계산된다. 비열은 같은 회사의 DSC(Differential Scanning Calorimetry) 200 F3 장비를 사용해 측정했으며, 밀도는 부피와 질량을 측정한 값을 이용하여 계산하였다. 도료를 도포하지 않은 bare Al plate에 대해서는 쉽게 열확산계수, 비열, 밀도를 측정하여 열전도도를 구할 수 있다. 도료가 코팅된 샘플에 대해서는 도료층을 일부 떼어내 비열을 측정하고, 밀도를 구한 후, 도료층의 열전도도가 2-layer 법으로 장비 내장 소프트웨어로 계산된다, 이때 Al 기판의 열확산계수, 비열, 밀도는 미리 측정한 bare Al plate의 값을 적용하였다. 실험 결과를 Table 1에 정리하였다. 흑연과 탄소나노튜브를 혼합한 충전제를 함유한 아크릴 복합체 박막에서 측정된 열전도도는 보통 고분자 재료의 열전도도 값의 상한 영역에 육박하는 값이며, 충전제 함량이 증가할수록 열전도도가 증가하는 경향을 보이고 있다.

  • PDF

Enhancement of Selective Removal of Nitrate Ions from a Mixture of Anions Using a Carbon Electrode Coated with Ion-exchange Resin Powder (이온교환수지 분말이 코팅된 탄소전극을 이용한 음이온 혼합용액에서 Nitrate 이온의 선택적 제거율 향상)

  • Yeo, Jin-Hee;Choi, Jae-Hwan
    • Applied Chemistry for Engineering
    • /
    • v.24 no.1
    • /
    • pp.49-54
    • /
    • 2013
  • We fabricated a composite carbon electrode to remove nitrate ions selectively from a mixed solution of anions. The electrode was fabricated by coating the surface of a carbon electrode with the nitrate-selective anion exchange resin (BHP55, Bonlite Co.) powder. We performed capacitive deionization (CDI) experiments on a mixed solution containing chloride, nitrate, and sulfate ions using a BHP55 cell constructed with the fabricated electrode. The removal of nitrate ions in the BHP55 cell was compared to that of a membrane capacitive deionization (MCDI) cell constructed with ion exchange membranes. The total quantity of ions adsorbed in BHP55 cell was $38.3meq/m^2$, which is 31% greater than that of MCDI cell. In addition, the number of nitrate adsorption in the BHP55 cell was $15.9meq/m^2$ (42% of total adsorption), 2.1 times greater than the adsorption in the MCDI cell. The results showed that the fabricated composite carbon electrode is very effective in the selective removal of nitrate ions from a mixed solution of anions.

Microencapsulation of aronia extract and stability of encapsulated anthocyanins during sulgidduk cooking (아로니아 추출물의 미세캡슐 제조 및 설기떡의 안토시아닌 안정성 연구)

  • Choi, Yeji;Koh, Eunmi
    • Korean Journal of Food Science and Technology
    • /
    • v.54 no.2
    • /
    • pp.163-170
    • /
    • 2022
  • Aronia (Aronia melanocarpa cv. Viking) contains high amounts of anthocyanins, which are susceptible to heat. This study was conducted to identify an efficient coating material for encapsulating aronia extract to enhance the stability of anthocyanins during cooking. Maltodextrin, maltodextrin+gum Arabic, and maltodextrin+carboxymethyl cellulose were chosen as the coating materials, mixed with aronia extract at a ratio of 2:1, and freeze-dried after homogenization. The encapsulated aronia extract was then used as a sulgidduk ingredient. Sulgidduk prepared with the encapsulated aronia had significantly higher values for redness, anthocyanin retention, total phenolic content, and antioxidant activity compared to sulgidduk prepared with non-encapsulated aronia. In addition, the sensory evaluation revealed that sulgidduk prepared with encapsulated aronia produced better color and taste. These results indicate that the encapsulation of aronia extract improved the stability of the anthocyanins in aronia, and encapsulated aronia can be used as a functional colorant in the food industry.

Formulation of Liquid Coating Agent using Bamboo Charcoal and its Characteristics (대나무숯 액상코팅제의 제조 및 특성)

  • Park, Sang-Bum;Lee, Hee-Young;Lee, Sang-Min;Park, Jong-Young
    • Journal of the Korean Wood Science and Technology
    • /
    • v.36 no.6
    • /
    • pp.113-120
    • /
    • 2008
  • This study was performed to develop environmentally-friendly finishing materials for construction. In order to abate formaldehyde and ammonia in indoor air, liquid coating agents for indoor finishing were formulated with bamboo charcoal powder, cypress extracted water, and water-borne acrylic binder. Deodorization rate, far-infrared ray emission rate, anions emission amount, and anti-bacterial effect were investigated. Deodorization rate was increased as cypress extracted water content increased. Deodorization rates of the coating agents were 60.0~98.6% on formaldehyde and 76.7~86.2% on ammonia. No differences on far-infrared ray emission rate, anions emission amount, and anti-bacterial effect were found depending on different formulations. A 91.7% of far-infrared ray emission rate, 77 ea/cc of anions emission amount, and 99.4% of anti-bacterial effect were detected for all formulations. More effective application method of the coating agents revealed was a spray-gun. A $0.66kg/m^2$ of coating agent with a spray-gun and $0.94kg/m^2$ of coating agent with a brush was consumed each.

Improvement of Adhesion Strength of High Temperature Plasma Coated Aluminum Substrate with Aluminum-Alumina Powder Mixture (알루미늄 기지에 알루미늄-알루미나 혼합분말을 이용한 고온플라즈마 열분사 코팅층의 밀착강도 향상기구)

  • Park, Jin Soo;Lee, Hyo Ryong;Lee, Beom Ho;Park, Joon Sik
    • Korean Journal of Materials Research
    • /
    • v.25 no.5
    • /
    • pp.226-232
    • /
    • 2015
  • High temperature plasma coating technology has been applied to recover damaged aluminum dies from wear by spraying pure aluminum and alumina powder. However, the coated mixed powder layer composed of aluminum and alumina often undergoes a detachment from the substrate, making the coated substrate die unable to maintain its expected life span. In this study, in order to increase the bonding strength between the substrate and the coating layer, a pure aluminum layer was applied as an intermediate bond layer. In order to prepare the specimen with variable bond coating conditions, the bond coat layers with a various gun speed from 10 cm/sec to 30 cm/sec were prepared with coating cycle variations ranging from three to nine cycles. The specimen with a bond coat layer coated with a gun speed of 20 cm/sec and three coating cycles exhibited ~13MPa of adhesion strength, while the specimen without a bond coat layer showed ~6 MPa of adhesion strength. The adhesion strength with a variation of bond coat layer thickness is discussed in terms of coating parameters.

The fabrication and characterization of composite $ZnS-SiO_2$ optical films (혼합 $ZnS-SiO_2$ 광학 박막의 제작 및 특성분석)

  • 성창민;이경진;류태욱;정종영;김석원;한성홍
    • Korean Journal of Optics and Photonics
    • /
    • v.9 no.2
    • /
    • pp.70-75
    • /
    • 1998
  • The ZnS-SiO$_2$ composite films were fabricated by codeposition from two independent sources. The optical properties and microstructures of these composite films were investigated. The refractive indices of the composite films were compared those by Drude's fomula and showed a good agreement. it showed that microstructures of composite films are an armorphous. But microstructures of composite films with ion assisted deposition are changed from an armorphous to crystalline with increasing Zn mole fractions. We designed and fabricated a single layer antireflection coating on the crystalline silicon substrate using the refractive index of the composite films.

  • PDF

A study on the Manufacture and Application of UV-Cured Anti-stain Coating Compounds for PVC Tile (PVC 바닥상재용 광경화형 내오염 코팅액의 제조 및 응용에 관한 연구)

  • Yoon, Hyun-Jung;Ha, Jin-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.5
    • /
    • pp.1741-1746
    • /
    • 2010
  • This study is on development of UV-cured anti-stain coating compounds which have more improved anti-stain function to prevent a surface of PVC tile from stain. To make an anti-stain coating composition, water soluble antistatic agent made from ammonium(IV) salt, antistatic agents for acrylic and polyurethane were used. Their contents varied from 5 to 20wt% against quantities of resin in coating composition. After coating PVC tiles using bar-coating method that can adjust a thickness, we estimated surface properties of coated layer such as anti-stain, electric resistance, adhesive power, thickness of coating, and so on. Results showed that a coating composition added 15wt% of water soluble antistatic agent and coated with No.12 bar-coater had the optimum surface property in electric resistance($3.24{\times}10^9{\Omega}/cm^2$), anti-stain(ink Test, Dust Test) and adhesive power. We could also find electric resistance and anti-stain effect were improved as antistatic agent content increased. However, excessive addition of antistatic agents(over 20wt%) caused the migration.

Preparation and Characterization of Sodium Caseinate (CasNa)/Transglutaminase (TG)-coated Papers for Packaging (포장용 Sodium Caseinate(CasNa)/Transglutaminase(TG) 코팅지 제조 및 특성 분석)

  • Hwang, Jihyeon;Kim, Dowan
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.28 no.2
    • /
    • pp.81-87
    • /
    • 2022
  • Paper is a promising alternative to petroleum-based plastic materials for sustainable packaging applications. However, paper exhibits poor gas and water vapor barrier properties, which restrict its effective application in the packaging industry. To enhance the properties of papers, sodium caseinate (CasNa)/transglutaminase (TG) coating solutions with various TG contents were prepared and coated on the papers. The chemical and morphological structures, mechanical properties, seal strength, and water vapor barrier properties of the coated papers were thoroughly investigated. The paper properties depended significantly on the chemical and morphological structures. Pristine CasNa and CasNa/TG coating solutions were evenly coated on the paper surfaces, without any cracks. The chemical structure of the CasNa/TG coated papers was slightly influenced by TG addition, resulting in increased elongation at break and enhanced water barrier properties. To promote the use of CasNa-coated papers in packaging applications, additional investigations must be performed to prevent gas and moisture permeation and enhance the mechanical strength of these papers via chemical reactions and introduction of organic/inorganic composites.