• Title/Summary/Keyword: 혼합층상

Search Result 64, Processing Time 0.021 seconds

A Study on Nonstoichiometry and Physical Properties of the Mixed Valency $Sr_{1+x}Dy_{1-x}FeO_{4-y}$Ferrite System (혼합원자가 $Sr_{1+x}Dy_{1-x}FeO_{4-y}$훼라이트계의 비화학양론과 물성 연구)

  • Chul Hyun Yo;Eun Seok Lee;Woong Bum Pyon;Moo Sil Pyon
    • Journal of the Korean Chemical Society
    • /
    • v.32 no.1
    • /
    • pp.3-8
    • /
    • 1988
  • Nonstoichiometric solid solutions of the $Sr_{1+x}Dy_{1-x}FeO_{4-y}$ system (x = 0. 00, 0. 25, 0. 50, 0. 75 and 1. 00) with layered $K-2NiF_4$ type structure were prepared at 1200$^{\circ}$C under atmospheric pressure. X-ray powder diffraction spectra show that the crystallographic phases of the samples are tetragonal within the x range. Nonstoichiometric chemical formulas have been determined by Mohr salt analysis and it shows that the amount of $Fe^{4+}$ ion or ${\tau}$ value increases with increasing x. Electrical conductivities of the samples which were measured in the temperature range of $-100{\sim}200^{\circ}$C under atmospheric air pressure are varied within the semiconductivity range of $l0^{-8}{\sim}10^{-2}(ohm^{-1}{\cdot}cm^{-1}$) and the activation energies are also varied from 0.02 to 0.08 eV. Mixed valency state of $Fe^{3+}$ and $Fe^{4+}$ in the sample of $Sr_{1.00}Dy_{1.00}FeO_{4.04}$ was identified again by Mossbauer spectrum at 200K.

  • PDF

Understanding Interfacial Charge Transfer Nonlinearly Boosted by Localized States Coupling in Organic Transistors (Carbon Nano Tube 및 산화그래핀을 첨가한 폴리우레아 복합재 제조 및 그 화학적 특성 분석)

  • Kim, Hyeongtae;Lee, Jihyun;An, Woo-Jin;Park, Jun Hong
    • Journal of Adhesion and Interface
    • /
    • v.22 no.4
    • /
    • pp.136-143
    • /
    • 2021
  • Polyurea has been investigated as a polymer matrix for composite materials because of its high mechanical strength. Although polyurea has a similar chemical structure to polyurethane, it has much higher strength and durability. In this study, the fabrication of polyurea composites reinforced with carbon nanotube (CNT) and graphene oxide (GO) is demonstrated to enhance the tensile strength of the glass fibers composite. Using FTIR and Raman spectroscopies, the chemical structures of polyurea, CNT, and GO are investigated. As a result, spectroscopy analysis reveals that the chemical structure of CNT, GO, and polyurea is maintained during the fabrication of the composite structure. Scanning electron microscopy reveals the uniform distribution of CNT and GO across the polyurea matrix. The reinforcement of 1 wt% CNT in polyurea enhances the tensile strength of CNT/polyurea composites. In contrast, the reinforcement of GO in polyurea induces the degradation of the tensile strength of GO/polyurea composites.

Enhanced Cycle Performance of Bi-layer Structured LMO-NCM Positive Electrode at Elevated Temperature (겹층구조의 LMO-NCM 복합양극을 통한 고온 사이클 수명개선 연구)

  • Yoo, Seong Tae;Ryu, Ji Heon
    • Journal of the Korean Electrochemical Society
    • /
    • v.25 no.4
    • /
    • pp.184-190
    • /
    • 2022
  • Spinel LiMn2O4 (LMO) and layered LiNi0.5Co0.2Mn0.3O2 (NCM) are widely used as positive electrode materials for lithium-ion batteries. LMO and NCM positive electrode materials have a complementary properties. LMO has low cost and high safety and NCM materials show a relatively high specific capacity and better cycle life even at elevated temperature. Therefore, the LMO and NCM active materials are blended and used as a positive electrode in large-size batteries for electric vehicles (xEV). In this study, the cycle performance of a blended electrode prepared by simply mixing LMO and NCM and a bi-layer electrode in which two electrode layers aree sequentially coated are compared. The bi-layer electrode prepared by composing the same ratio of both active materials has similar capacity and cycle performance to the blend electrode. However, the LN electrode coated with LMO first and then NCM is the best in the full cell cycle performance at elevated temperature, and the NL electrode, in which NCM is first coated with LMO has a faster capacity degradation than the blended electrode because LMO is mainly located on the top of the electrode adjacent to electrolyte and graphite negative electrode. Also, the LSTA (linear sweep thermmametry) analysis results show that the LN bi-layer electrode in which the LMO is located inside the electrode has good thermal stability.

Evaluation of Thermal Conductivity for Screen-Printed AlN Layer on Al Substrate in Thickness Direction (알루미늄 기판에 스크린 인쇄한 AlN 후막의 두께 방향으로 열전도도 평가)

  • Kim, Jong-Gu;Park, Hong-Seok;Kim, Hyun;Hahn, Byung-Dong;Cho, Young-Rae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.22 no.4
    • /
    • pp.65-70
    • /
    • 2015
  • A study on thermal properties for a single-layer metal and two-layer composites was investigated for the heat-sink application. For the single-layer metal, an aluminum alloy (Al6061) was selected. A screen printed aluminum nitride (AlN) layer on the Al6061 substrate was chosen for the two-layer composites. The thermal conductivity of the sample was determined from the thermal diffusivity measured by the light flash analysis (LFA), specific heat and density. Measured thermal property values were compared to calculated values using the data from the references. The thermal conductivity of composites with screen printed AlN layer on the Al6061 substrate decreased linearly with increasing the thickness of AlN layer. Measured values of the thermal conductivity for composites with $53{\mu}m$ and $163{\mu}m$ thick AlN layers were $114.1W/m{\cdot}K$ and $72.3W/m{\cdot}K$, respectively. In particular, the thermal conductivity of the screen-printed AlN layer was demonstrated by appling the rule of mixture in view point of thermal resistivity. Measured values of the thermal conductivity for AlN layers with the thickness of $53{\mu}m$ and $163{\mu}m$ showed $9.35W/m{\cdot}K$ and $12.40W/m{\cdot}K$, respectively.

A Study on the Preparation of Battery Separator for Polyethylene/Potassium Hexatitanate Whisker (폴리에틸렌/육티탄산칼륨 휘스커 복합재료에 의한 축전지격리막의 제조에 관한 연구)

  • Lee, Wan-Jin;Ko, Man-Seok;Choi, Byung-Ryul;Cho, Il-Hoon
    • Applied Chemistry for Engineering
    • /
    • v.9 no.2
    • /
    • pp.193-199
    • /
    • 1998
  • The mixtures of ultra-high molecular weight polythylene (UHMWPE), high density polyethylene (HDPE), process oil (mineral oil) and potassium hexatitanate whisker were melted and mixed at $150^{\circ}C$ for 30min, and prepared by compression molding to the specimen of separator of about $200{\mu}m$ thickness at the same temperature and 5000 psi. Thereafter the pores were formed by extracting process oil with organic solvents. In this study, the range of PR (the ratio polymer to process oil) was varied from 0.1 to 0.5 because the specimen turned into rubbery phase at which PR was below 0.1 whereas it changed into gel phase at which PR was above 0.5. When the specimen was treated with nonpolar organic solvents, process oil was extracted nearly 98%. Tensile strength was $31kg/cm^2$ at PR = 0.426, and resistance of specimen was $37m{\Omega}/cm^2$ at PR = 0.186, and $53m{\Omega}/cm^2$ at PR = 0.426. The $N_2$ adsorption-desorption isotherm showed a hysteresis representing regions of capillary condensation, and the surface area at PR = 0.186 was relatively large as $130cm^2/g$. Potassium hexatitanate whisker was randomly dispersed in between PE layers. It might be that the whisker is intercalated through the PE thin layers oriented by compression.

  • PDF

Laboratory Study on the Removal of Heavy Metals Using Apatite for Stabilization of Tailings at the Ulsan Abandoned Iron Mine (울산폐철광산 광미 안정화를 위한 인회석의 중금속 제거 실내실험)

  • Choi, Jung-Chan
    • Journal of Soil and Groundwater Environment
    • /
    • v.11 no.4
    • /
    • pp.1-9
    • /
    • 2006
  • The purpose of this study is to evaluate laboratory experiments on arsenic and cadmium removal from tailings using apatite at the Ulsan Abandoned Iron Mine, and to develop a stabilization technique. The results of this study show that the permeability is decreased proportionally to the amount of apatite when it is added below 8%, while this is almost constant when the amount of apatite is added above 10%. The water extraction test from tailings using deionized water for several days shows that pH (7.4-8.4) is almost constant or slightly increased when apatite is added below 8%, while it is slightly decreased when apatite is added above 10%. According to TCLP test, reduction of concentrations of heavy metals in leachate is proportional to amount of apatite added. It seems that precipitates generated from leachate-apatite chemical reaction are not redissolved. As a result, cadmium and arsenic in leachate is mostly removed when apatite is added above 10%, and it is suggested that a proper technique should be selected for field application because either mixed or layered method shows almost same removal efficiencies of cadmium and arsenic in tailings.

Characters of Fracture-filling Minerals in the KURT and Their Significance (한국원자력 연구원 지하처분연구시설(KURT)의 단열충전광물 특성과 그 의미)

  • Lee, Seung-Yeop;Baik, Min-Hoon
    • Journal of the Mineralogical Society of Korea
    • /
    • v.20 no.3
    • /
    • pp.165-173
    • /
    • 2007
  • The KAERI Underground Research Tunnel (KURT) located in KAERI (Korea Atomic Energy Research Institute) was recently constructed following the site investigation in 2003. Its dimension is 180 m in length, 6 m in width, and 6 m in height, and it has a horseshoe-like cross-sec-lion and is located in the ground to the depth of 90 m. When the tunnel was dug into the ground with 100 m in length, fresh rocks, weathered rocks and fracture-filling materials were taken and examined by mineralogical and chemical analyses. There are phyllosilicate minerals such as illite, smectite and chlorite including calcite, which are filling some faults and cracks of the KURT rock. The illite and smectite usually coexist in the fracture, where their content ratio is different according to which mineral is predominant. There are high concentrations of U and Th in the rocks coated with iron-oxides and filled with secondary materials as compared with those in the fresh rocks. It seems that the radionuclides, which are slowly leached from the parent rocks or exist as a dissolved form in the groundwater and hydrothermal solution, may have been migrated along the fractures and thereafter selectively sorbed and coprecipitated on the iron-oxides and the fracture-filling materials. These results will be very useful far the evaluation of environmental factors affecting the nuclides migration and retardation when long-term safety is considered to the geological disposal of high-level radioactive wastes in the future.

Structural and electrochemical characterization of K2NiF4 type layered perovskite as cathode for SOFCs (K2NiF4 type 층상 페롭스카이트 구조 La(Ca)2Ni(Cu)O4-δ의 SOFC 양극 특성 및 결정구조 평가)

  • Myung, Jae-ha;Hong, Youn-Woo;Lee, Mi Jai;Jeon, Dae-Woo;Lee, Young-Jin;Hwang, Jonghee;Shin, Tae Ho;Paik, Jong Hoo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.25 no.3
    • /
    • pp.116-120
    • /
    • 2015
  • $La_2NiO_{4+{\delta}}$ based oxides, a mixed electronic-ionic conductors (MIECs) with $K_2NiF_4$ type structure, have been considerably investigated in recent decades as electrode materials for advanced solid oxide fuel cells (SOFCs) due to their high electrical conductivity, and oxidation reduction reaction (ORR). In this study, structure properties of $La(Ca)_2Ni(Cu)O_{4+{\delta}}$ were studied as a potential cathode for intermediate temperature SOFCs (IT-SOFCs).

A Study on the Fabrication of Lithium Iron Oxide Electrode and its Cyclic Voltammetric Characteristics (리튬-철 산화물 전극의 제조 및 전류전위 순환 특성에 관한 연구)

  • Jeong Won-Joong;Ju Jeh-Beck;Sohn Tai-Won
    • Journal of the Korean Electrochemical Society
    • /
    • v.2 no.3
    • /
    • pp.156-162
    • /
    • 1999
  • Various types of iron oxide based materials as a cathode of lithium secondary battery have been prepared and their electrochemical characteristics have been also observed. In order to understand the fundamental characteristics of iron oxide electrode, three kinds of iron oxides such as iron oxides formed by direct oxidation of iron plate or iron powders and FeOOH powders were tested with cyclic voltammetry. The oxidation and reduction peaks due to the reaction of intercalation and deintercalation were not observed for the iron oxide prepared with iron plate and FeOOH powders. In case of iron oxide prepared from iron powders, only one reduction peak was observed. A layered form of $LiFeO_2$ was synthesized directly from $FeCl_3\cdot6H_2O,\;NaOH\;and\;LiOH$ and LiOH by hydrothermal reaction. The effect of NaOH on the electrode performance was examined. When increasing NaOH, it provides the electrode with less discharge capacity and efficiency, however, decreasing rate of discharge capacity became smaller. $LiFeO_2$ synthesized with the molar ratio of $NaOH/FeCl_3/LiOH$, 2/1/7 showed the largest capacity, but the discharging efficiency was sharply decreased after 30 cycles.

Synthesis and Characterization of Low-Dimensional Chalcogenide Compound via a Molten Salt Method (용융염법을 이용한 저차원 구조의 금속 칼코겐 화합물의 합성 및 구조 특성연구)

  • Choi, Duc-Su;Yun, Hye-Sik;Oh, Hwa-Suk;Kim, Don;Yun, Ho-Seop;Park, Youn-Bong
    • Journal of the Korean Chemical Society
    • /
    • v.48 no.5
    • /
    • pp.504-509
    • /
    • 2004
  • The reaction of Cu metal with mixed alkali metal polyselenide flux ($KNaSe_x$) produced large plate-like crystals of $KCu_4Se_3$. The structure of $KCu_4Se_3$, determined with X-ray single crystal diffraction techniques, is tetragonal (P4/mmm, a=4.013(1))${\AA}$, c=9.712(1))${\AA}$, z=1, R=6.7%). The structure is composed $[Cu_4Se_3]_n^{n-}$double layers which are made of fused anti PbO-type Cu2Se2 layers. Temperature variable resistivity measurement on single crystal of $KCu_4Se_3$ shows metallic behavior ranging from $1.8{\times}10^{-4}{\Omega}{\cdot}cm$ (at 300 K) to $1.0{\times}10^{-6}{\Omega}{\cdot}cm$ (at 20 K).