• Title/Summary/Keyword: 혼합센서

Search Result 347, Processing Time 0.026 seconds

Interfacial Evaluation and Microfailure Sensing of Nanocomposites by Electrical Resistance Measurements and Wettability (전기저항측정법 및 젖음성을 이용한 나노복합재료의 미세파손 감지능 및 계면물성 평가)

  • Park, Joung-Man;Kwon, Dong-Jun;Shin, Pyeong-Su;Kim, Jong-Hyun;Baek, Yeong-Min;Park, Ha-Seung
    • Composites Research
    • /
    • v.30 no.2
    • /
    • pp.138-144
    • /
    • 2017
  • Damage sensing of polymer composite films consisting of poly(dicyclopentadiene) p-DCPD and carbon nanotube (CNT) was studied experimentally. Only up to 1st ring-opening polymerization occurred with the addition of CNT, which made the modified film electrically conductive, while interfering with polymerization. The interfacial adhesion of composite films with varying CNT concentration was evaluated by measuring the wettability using the static contact angle method. 0.5 wt% CNT/p-DCPD was determined to be the optimal condition via electrical dispersion method and tensile test. Dynamic fatigue test was conducted to evaluate the durability of the films by measuring the change in electrical resistance. For the initial three cycles, the change in electrical resistance pattern was similar to the tensile stress-strain curve. The CNT/p-DCPD film was attached to an epoxy matrix to demonstrate its utilization as a sensor for fracture behavior. At the onset of epoxy fracture, electrical resistance showed a drastic increase, which indicated adhesive fracture between sensor and matrix. It leads to prediction of crack and fracture of matrix.

Automatic map Building for Fuzzy Autonomous Mobile Robot Using Dempster-Shafter Theory (Dempster-Shafer 이론을 이용한 퍼지 자율이동로봇의 지도 자동구축)

  • 김영철;조성배;오상록
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.04b
    • /
    • pp.328-330
    • /
    • 2001
  • 이 논문에서는 이동 로봇을 위하여 퍼지 이론과 Dempster-Shafer 이론을 이용한 불확실한 환경에서의 센서기반 네비게이션 방법을 제안한다. 제안된 제어기는 장애물 회피 동작과 목적지 찾기 동작을 위한 2개의 행동 모듈로 구성되어 있다. 특히, 실험 환경내에서 안전하게 움직이기 위해서 로봇이 목적지를 찾기 전에 자동으로 지도를 구축(map building) 하도록 하였다. 이 실험에서 구성된 지도는 평면상의 격자를 중심으로 작성되었다. 로봇의 센서에서 읽어들인 센서 값은 Dempster-Shaper 이론을 이용하여 기존의 지도와 혼합된다. 즉, 로봇이 움직일때마다 실험 환경내에서 새로운 정보를 읽어 들이고, 그 정보로 인하여 기존의 지도가 새로운 지도로 갱신되는 것이다. 이러한 작업을 거치면서 로봇은 장애물과 충돌없이 네비게이션하는 것 뿐 아니라 정해진 목적지까지도 쉽게 찾아갈 수 있다.

  • PDF

Using Swan-Ganz Catheter in Cardiopulmonary Patients with More Accurate Cardiac Output Measurement Module Development (Swan-Ganz Catheter를 이용한 심폐기능 이상자의 정확한 Cardiac Output 측정 모듈 개발)

  • Jeong, Yong-Hyun;Kim, Young-Kil
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.05a
    • /
    • pp.473-476
    • /
    • 2010
  • 본 논문에서는 심폐기능에 이상이 있는 중환자의 상태를 진단하기 위한 방법으로 Swan-Ganz Catheter를 체내에 삽입하여 심박 출량과 혼합정맥혈 산소포화도를 기존 장비들보다 정밀하게 측정할 수 있는 모듈을 개발하고자 한다. Swan-Ganz Catheter에는 두 개의 온도센서와 세 개의 압력센서를 포함하고 있으며 이를 통해 입력되는 센서 값을 세밀하게 수집하고 이를 기반으로 일회 심박출량, 전신 및 폐혈관저항, 산소소모량 등을 계산하여 환자의 상태를 보다 정확하게 진단 및 치료가 가능하게 한다.

  • PDF

Chemical Sensors Using Polymer/Graphene Composite and The Effect of Graphene Content on Sensor Behavior (고분자/그래핀 복합재료의 센서 응용 및 그래핀 함량이 센서 거동에 미치는 영향)

  • Bae, Joonwon
    • Applied Chemistry for Engineering
    • /
    • v.31 no.1
    • /
    • pp.25-29
    • /
    • 2020
  • In this study, a polymer/graphene hybrid composite was prepared by a simple roll-method and a simple sensor was produced by a convenient surface engineering procedure. The sensor performance was examined and the effect of graphene content on the sensing behavior was monitored. A polymer (polydimethylsiloxane, PDMS) paste containing graphene powder was prepared by a three-roll apparatus and polymer/graphene hybrid composite was produced by a two-roll technique. The sensing medium, cyclodextrin (CD) was introduced by a convenient bio-conjugation method. The efficacy of surface modification was confirmed by FT-IR spectroscopy and the ohmic relation was observed on composite surfaces. An analyte (e.g., methyl paraben, MePRB) at a 10 nM concnetration could be detected. When the graphene loading was low, the sensor performance was relatively poor. This was attributed to the absence of graphene alignments, which were observed for the composites having a high graphene loading. This indicates that the sensor performance was influenced by physical alignments of the filler. This article can provide important information for future research on developing sensing devices.

Tiered-MAC: An Energy-Efficient Hybrid MAC Protocol for Wireless Sensor Networks (Tiered-MAC: 무선 센서 네트워크를 위한 에너지 효율적인 하이브리드 MAC 프로토콜)

  • Lee, Han-Sun;Chung, Kwang-Sue
    • Journal of KIISE:Information Networking
    • /
    • v.37 no.1
    • /
    • pp.42-49
    • /
    • 2010
  • Because sensor nodes operate with the limited power based on battery which cannot be easily replaced, energy efficiency is a fundamental issue pervading the design of communication protocols developed for wireless sensor networks. In wireless networks, energy efficient MAC protocols can usually be described as being either a contention-based protocol or a schedule-based protocol. It is suitable to use combination of both contention-based protocol and schedule-based protocol, because the strengths and weaknesses of these protocols are contrary to each other. In this paper, in order to minimize energy consumption of sensor nodes and maximize network lifetime, we propose a new MAC protocol called "Tiered-MAC" The Tiered-MAC uses a schedule-based TDMA inside maximum transmission range of sink node and a contention-based CSMA otherwise. Therefore, by efficiently managing the congested traffic area, the Tiered-MAC reduces the unnecessary energy consumption. Based on the ns-2 simulation result, we prove that the Tiered-MAC improves the energy-efficiency of sensor network nodes.

Robust Data, Event, and Privacy Services in Real-Time Embedded Sensor Network Systems (실시간 임베디드 센서 네트워크 시스템에서 강건한 데이터, 이벤트 및 프라이버시 서비스 기술)

  • Jung, Kang-Soo;Kapitanova, Krasimira;Son, Sang-H.;Park, Seog
    • Journal of KIISE:Databases
    • /
    • v.37 no.6
    • /
    • pp.324-332
    • /
    • 2010
  • The majority of event detection in real-time embedded sensor network systems is based on data fusion that uses noisy sensor data collected from complicated real-world environments. Current research has produced several excellent low-level mechanisms to collect sensor data and perform aggregation. However, solutions that enable these systems to provide real-time data processing using readings from heterogeneous sensors and subsequently detect complex events of interest in real-time fashion need further research. We are developing real-time event detection approaches which allow light-weight data fusion and do not require significant computing resources. Underlying the event detection framework is a collection of real-time monitoring and fusion mechanisms that are invoked upon the arrival of sensor data. The combination of these mechanisms and the framework has the potential to significantly improve the timeliness and reduce the resource requirements of embedded sensor networks. In addition to that, we discuss about a privacy that is foundation technique for trusted embedded sensor network system and explain anonymization technique to ensure privacy.

A Study on the Effect of the Sensor Gain Error in the Precision Measurement of Straightness Error Using Mixed Sequential Two-Probe Method (혼합축차이점법을 이용한 진직도 정밀측정에 있어서 센서 게인오차의 영향에 관한 연구)

  • Jeong, Ji Hun;Oh, Jeong Seok;Kihm, Gyungho;Park, Chun Hong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.6
    • /
    • pp.607-614
    • /
    • 2013
  • In this study, effect of the sensor gain error is theoretically analyzed and simulated when mixed sequential two-prove method(MTPM) is applied for the precision measurement of straightness error of a linear motion table. According to the theoretical analysis, difference of the gain errors between two displacement sensors increases measurement error dramatically and alignment error of the straightedge is also amplified by the sensor gain difference. On the other hand, if the gain errors of the two sensors are identical, most of error terms are cancelled out and the alignment error doesn't give any influence on the measurement error. Also the measurement error of the straightness error is minimized compared with that of the straightedge's form error owing to close relationship between straightness error and angular motion error of the table in the error terms.