• Title/Summary/Keyword: 혼입효과

Search Result 451, Processing Time 0.024 seconds

Study of Polymer Rapid Setting Cement Concrete Using Electric Arc Furnace Oxidizing Slag Aggregate (전기로(電氣爐) 산화(酸化)슬래그 잔골재를 이용한 폴리머 속경성(速硬性) 시멘트 콘크리트 기초물성(基礎物性) 연구(硏究))

  • Jung, Won-Kyong;Gill, Yong-Soo;Kang, Seung-Hee
    • Resources Recycling
    • /
    • v.21 no.1
    • /
    • pp.30-40
    • /
    • 2012
  • Electric arc furnace slag is made in ironworks during steel refining, it is been increasing chemical and physical resistibility using ageing method of unstable state of melting steel slag for using concrete's fine aggregates. Which is been changing stable molecular structure of aggregates, it restrains moving of ion and molecule. In Korea, KS F 4571 has been prepared for using the electric arc furnace oxidizing slag to concrete aggregates(EFS). In this study, Electric arc furnace oxidizing slag is used in the PRCC(Polymer Rapid setting Cement Concrete) which is applied a bridge pavement of rehabilitation, largely. The results showed that the increment of compressive strength development by 10- 20%. The flexural strength of EFS-Con increased greatly as the electric arc furnace oxidizing slag changed. The compressive strength and flexural strength developed enough for opening the overlayed EFS-Con to the traffic after 4 hours of EFS-Con placement. The permeability of EFS-Con was evaluated as negligible due to its very low charge passed. Thus, EFS-Con could be used at repairing or overlaying the concrete at fast-track job sites.

Service Life Variation Considering Increasing Initial Chloride Content and Characteristics of Mix Proportions and Design Parameters (초기 염화물량의 증가와 배합 및 설계 변수 특성을 고려한 콘크리트 내구수명의 변동성)

  • Park, Sun-Kyung;Kwon, Seung-Jun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.3
    • /
    • pp.236-245
    • /
    • 2021
  • It is very important for structure designer to understand the service life variation since a wide range of service life is evaluated with changing exposure conditions and design parameters. Recently, for zero-carbon, waste plastic has been used for fuel for clinker production and this yields increase in chloride content in cement. This study is for evaluation of changing service life in the concrete with increasing initial chloride content due to usage of plastic-SRF(Solid Refuse Fuel) considering various exposure conditions and design parameters. For this, 4 levels of initial chloride content were assumed, and the service life was assessed using LIFE 365 program considering various environmental conditions including 3 levels of surface chloride content. As for analysis parameters, critical/initial chloride content, blast furnace slag powder replacement ratio, W/B(Water to Binder) ratio, cover depth, and unit mass for binder are adopted. Service life decreases with increasing initial chloride content and a significant reduction of service life is not evaluated permitting up to 1,000ppm of initial chloride content. With increasing slag replacement ratio, a longer service life can be secured since blast furnace slag powder has the effect of reducing the diffusion of external chloride ions and fixing the free chloride. It is thought that increasing initial chloride content up to European standard is helpful for enhancing sustainability and reducing carbon emission. Though the reduction in service life due to an increase in the initial chloride content is not significant in slag-concrete with low surface chloride content, careful consideration for mixing design should be paid for the exposure environment with high surface chloride content.

Evaluation of NOx Reduction Performance by Photocatalytic (TiO2) Coating of Cement Mortar Mixed with Zeolite and Activate Hwangtoh (제올라이트와 활성 황토를 혼입한 시멘트 모르타르의 광촉매(TiO2) 코팅에 따른 NOx 저감성능평가)

  • Park, Jang-Hyun;Kim, Hyeok-Jung
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.4
    • /
    • pp.483-489
    • /
    • 2020
  • Particulate matter is divided into PM10 (particle diameter of 10 ㎛ or less) and PM2.5 (particle diameter of 2.5 ㎛ or less), which are approximately 1/5 of the thickness of the hair. Due to its effect on the human body, lung disease, arteriosclerosis and heart It is known as a carcinogen that causes various diseases such as diseases. It is known that the main cause of such fine dust is nitrogen dioxide (NOx), which is emitted from automobiles in about 57.3% of urban roadsides. Therefore, in this study, as part of the development of functional construction materials to reduce NOx generated from road transport pollutants, comparative evaluation of NOx reduction performance was conducted according to the replacement rate of cement mortar in which cement was replaced with a porous material. In addition, the NOx reduction performance of cement mortar according to the photocatalyst application method and the number of applications was compared an d evaluated. As a result of the experiment, when activated ocher was substituted by 30%, it showed a reduction effect of about 32.7%, showing the best reduction performance.

Study on the Modification Effect of Lightweight Aggregate using Blast Furnace Slag (고로슬래그 미분말을 이용한 경량골재의 표면개질 효과에 관한 연구)

  • Kim, Ho-Jin;Park, Sun-Gyu
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.1
    • /
    • pp.111-116
    • /
    • 2022
  • Recently, building structures tend to be super high-rise and large-scale with the development of concrete technology. When high-rise building is constructed of reinforced concrete structure, it has a disadvantage that its own weight increases. Light weight aggregate(LWA) was developed to compensate for these shortcomings. Manufacturing concrete using these light weight aggregates has the advantage of reducing the self weight of the reinforced concrete structure, but has a disadvantage in that the strength of the concrete is reduced. In this study, an experimental study was conducted to investigate the strength characteristics of hardened cement according to the presence or absence of surface coating of lightweight aggregates. As a result, in terms of compressive strength, the surface-coated lightweight aggregate exhibited higher strength than the uncoated lightweight aggregate. Also, it was considered that this is because the interfacial voids of the surface coated lightweight aggregate mixed cement hardened body were filled with blast furnace slag fine powder particles.

Evaluation of Strength and Chloride Diffusion in Concrete with FA Considering Temperature Effect (FA를 혼입한 콘크리트의 온도 영향을 고려한 강도 및 염화물 확산성 평가)

  • Keun-Hyeok Yang;Seung-Jun Kwon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.1
    • /
    • pp.62-69
    • /
    • 2023
  • For the nuclear power concrete plant structures in the UAE, it is necessary to consider the deterioration from high sulfate ions in the atmosphere and high chloride ions from the coast. In this study, two strength grade concrete mixture (40 MPa and 27 MPa) and two curing/diffusion temperatures (20 ℃ and 50 ℃) were considered for evaluating the temperature effects on diffusion and strength due to high average temperature above 38 ℃ a year in UAE. When the initial curing temperature was high, the compressive strength increased in high-temperature curing to 7 days, but the strength slightly increased in the 20 ℃ curing condition at 28 days. Regarding diffusion test, unlike the compressive test results, reduced chloride diffusion coefficients were evaluated both in 40 MPa and 27 MPa grade at 28 days. In the case of 91 days of curing, an increase in diffusivity due to high temperature and a decrease in diffusivity due to age effect occur simultaneously. Compared to the results of the curing and diffusion tests at 20 ℃ and 28 days, when the curing and diffusion tests were conducted at 50 ℃ in 91 days, the diffusion coefficients decreased to 76.2 % in 40 MPa grade and 85.4 % in 37 MPa grade with increasing curing period, respectively.

Applicability analysis of carbondioxide conversion capture materials produced by desulfurization gypsum for cement admixture (시멘트 혼합재로서 정유사 탈황석고를 활용하여 제조한 탄산화물의 적용성 분석)

  • Hye-Jin Yu;Young-Jun Lee;Sung-Kwan Seo;Yong-Sik Chu;Woo-Sung Yum
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.33 no.2
    • /
    • pp.54-60
    • /
    • 2023
  • In this study, microstructure and basic property analysis of DG (Desulfurization gypsum) and CCMs (Carbondioxide conversion capture materials) made by reacting CO2 with DG were conducted to analyze applicability as a cement admixture. The main crystalline phases of DG were CaO and CaSO4, and CCMs were CaSO4, CaCO3, Ca(OH)2 and CaSO4·H2O. As a result of particle size analysis, the difference in average particle sizes between the two materials was about 7 ㎛. No major heavy metals were detected in the CCMs, and as a result o f TGA, the CO2 decomposition of CCMs was more than twice as high as that of DG. Therefore, it was judged that CCMs could be used as a cement admixture through optimization of manufacturing conditions. As a results of measuring the strength behavior of DG and CCMs mixture ratios, the long-term strength of CCMs-mixed mortar was higher, and this is due to the filler effect of CaCO3 in CCMs.

Simulation of Cracking Behavior Induced by Drying Shrinkage in Fiber Reinforced Concrete Using Irregular Lattice Model (무작위 격자 모델을 이용한 파이버 보강 콘크리트의 건조수축 균열 거동 해석)

  • Kim, Kunhwi;Park, Jong Min;Bolander, John E.;Lim, Yun Mook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.4A
    • /
    • pp.353-359
    • /
    • 2010
  • Cementitious matrix based composites are vulnerable to the drying shrinkage crack during the curing process. In this study, the drying shrinkage induced fracture behavior of the fiber reinforced concrete is simulated and the effects of the fiber reinforcement conditions on the fracture characteristics are analysed. The numerical model is composed of conduit elements and rigid-body-spring elements on the identical irregular lattice topology, where the drying shrinkage is presented by the coupling of nonmechanical-mechanical behaviors handled by those respective element types. Semi-discrete fiber elements are applied within the rigid-body-spring network to model the fiber reinforcement. The shrinkage parameters are calibrated through the KS F 2424 free drying shrinkage test simulation and comparison of the time-shrinkage strain curves. Next, the KS F 2595 restrained drying shrinkage test is simulated for various fiber volume fractions and the numerical model is verified by comparison of the crack initiating time with the previous experimental results. In addition, the drying shrinkage cracking phenomenon is analysed with change in the length and the surface shape of the fibers, the measurement of the maximum crack width in the numerical experiment indicates the judgement of the crack controlling effect.

Research Direction for Functional Foods Safety (건강기능식품 안전관리 연구방향)

  • Jung, Ki-Hwa
    • Journal of Food Hygiene and Safety
    • /
    • v.25 no.4
    • /
    • pp.410-417
    • /
    • 2010
  • Various functional foods, marketing health and functional effects, have been distributed in the market. These products, being in forms of foods, tablets, and capsules, are likely to be mistaken as drugs. In addition, non-experts may sell these as foods, or use these for therapy. Efforts for creating health food regulations or building regulatory system for improving the current status of functional foods have been made, but these have not been communicated to consumers yet. As a result, problems of circulating functional foods for therapy or adding illegal medical to such products have persisted, which has become worse by internet media. The cause of this problem can be categorized into (1) product itself and (2) its use, but in either case, one possible cause is lack of communications with consumers. Potential problems that can be caused by functional foods include illegal substances, hazardous substances, allergic reactions, considerations when administered to patients, drug interactions, ingredients with purity or concentrations too low to be detected, products with metabolic activations, health risks from over- or under-dose of vitamin and minerals, and products with alkaloids. (Journal of Health Science, 56, Supplement (2010)). The reason why side effects related to functional foods have been increasing is that under-qualified functional food companies are exaggerating the functionality for marketing purposes. KFDA has been informing consumers, through its web pages, to address the above mentioned issues related to functional foods, but there still is room for improvement, to promote proper use of functional foods and avoid drug interactions. Specifically, to address these issues, institutionalizing to collect information on approved products and their side effects, settling reevaluation systems, and standardizing preclinical tests and clinical tests are becoming urgent. Also to provide crucial information, unified database systems, seamlessly aggregating heterogeneous data in different domains, with user interfaces enabling effective one-stop search, are crucial.

A Study on a New Working-system of Mechanical Land Clearing and Development of Fertle Soil. (기계개간의 새로운 작업체계와 숙지화 촉진에 관한 연구)

  • Hwang, Eun
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.13 no.1
    • /
    • pp.2162-2176
    • /
    • 1971
  • From the ancient times our forefathers settled down in this peninsular and cultivated the hills and waste-lands into fields. Instead of fertilizing the lands they moved to find other fertile lands and lived a feudal life of agriculture and various machines played a main role in the land reclamation. The best method of land clearing, the time and efficiency in the operation and the effect of growing crops should sysematically analized prior to the time of 3rd Five-year Economic Development(1972-1976) in order to cultivated 210,000 ha of waste-land or the modernization of our country. The present study was investigated to find out a new working-system of mechanical land clearing and development of fertile soil. The results are as follows: 1) The land reclamation in natural slope is much more encourageable in land clearing and farming when the slope is below ten grades than bench terrace. 2) Weeds were mixed with soil in the land clearing work in order to supply organic materials and to make soil swollen instead of burning of just removing. 3) The equipments such as bulldozers, harrows, power tillers and so on should be prepared in order to do a systematic work in the land clearing. 4) The work of pulling-up roots is dependent upon the forms of roots spreading under the ground. The work of the pulling-up the straight roots was most difficult. 5) The land clearing work of the wrinkled style blocks was easy in pulling up roots and in the time of first plowing. The harrowing work could also be simply done. 6) The amount of soil carried was $240m^3/10a$, 15.6% increased amount from the standard block, while the required time of clearing work was 2 hours 15 minutes 45 seconds/10a, the one third of time required for the standard block. 7) The time disc harrowing work increased 50%, or 15 minutes/10a compared to the harrowing work required in the cultivated soil. 8) The time of rotary tilling increased 2.4 times or 1 hour 47 minutes 43 seconds/10a compared to the time required in the cultivated soil. 9) The reclamed land should be fertilized according to the soil quality, especially added fertilizer should be more than 1,200kg/10a, limes 20kg/10a. In order to produce added fertilizer grass fields should be needed. 10) The experiment of pasture growing is now progressing and therefore the effect of land clearing and the degree of developed soil will be investigated before long.

  • PDF

Tensile Behavior of Hybrid Fiber Reinforced Cement Composite According to the Hooked Steel Fiber and Polyvinyl Alcohol Fiber Blending Ratio and Strain Rate (후크형 강섬유와 폴리비닐알코올 섬유의 혼합 비율과 변형속도에 따른 하이브리드 섬유보강 시멘트복합체의 인장거동)

  • Son, Min-Jae;Kim, Gyu-Yong;Lee, Sang-Kyu;Kim, Hong-Seop;Nam, Jeong-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.6
    • /
    • pp.98-105
    • /
    • 2017
  • In this study, the fiber blending ratio and strain rate effect on the tensile behavior of hybrid fiber reinforced cement composite was evaluated. Hooked steel fiber and polyvinyl alcohol fiber were used for reinforcing fiber. The fiber blending ratio of HSF+PVA were 1.5+0.5, 1.0+1.0 and 0.5+1.5vol.%. As a results, the tensile strength, strain capacity and fracture toughness of the hooked steel fiber reinforced cement composites were improved by the increase of the bond strength of the fiber and the matrix according to increase of strain rate. However, the tensile stress sharply decreased after the peak stress because of the decrease in the number of straightened pull-out fibers by micro cracks in the matrix around hooked steel fiber. On the other hand, PVA fiber showed cut-off fracture at strain rate $10^{-6}/s$ with multiple cracks. However, at the strain rate $10^1/s$, the multiple cracks and strain capacity were decreased because of the pull-out fracture of PVA fiber. The HSF1.5PVA0.5 shown the highest tensile strength because the PVA fiber suppressed the micro cracks in the matrix around the hooked steel fiber and improved the pull-out resistance of hooked steel fiber. Thus, DIF of strain capacity and fracture toughness of HSF1.5PVA were greatly improved. In addition, the synergistic response of fracture toughness was positive because the tensile stress was slowly decreased after the peak stress by improvement of the pull-out resistance of hooked steel fiber at strain rate $10^1/s$.