• Title/Summary/Keyword: 혼동 행렬

Search Result 33, Processing Time 0.028 seconds

Predicting Early Retirees Using Personality Data (인성 데이터를 활용한 조기 퇴사자 예측)

  • Kim, Young Park;Kim, Hyoung Joong
    • Journal of Digital Contents Society
    • /
    • v.19 no.1
    • /
    • pp.141-147
    • /
    • 2018
  • This study analyzed the early retired employees who stayed in company no longer than 3 years based on a certain company's personality evaluation result data. The predicted model was analyzed by dividing into two categories; the manufacture group and the R&D group. Independent variables were selected according to the stepwise method. A logistic regression model was selected as a prediction model among various supervised learning methods, and trained through cross-validation to prevent over-fitting or under-fitting. The accuracy of the two groups were confirmed by the confusion matrix. The most influential factor for early retirement in the manufacture group was revealed as "immersion," and for the R&D group appeared as "antisocial." In the past, people concentrated on collecting data by questionnaire and identifying factors that are highly related to the retirement, but this study suggests a sustainable early retirement prediction model in the future by analyzing the tangible outcome of the recruitment process.

ROC evaluation for MLP ANN drought forecasting model (MLP ANN 가뭄 예측 모형에 대한 ROC 평가)

  • Jeong, Min-Su;Kim, Jong-Suk;Jang, Ho-Won;Lee, Joo-Heon
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.10
    • /
    • pp.877-885
    • /
    • 2016
  • In this study, the Standard Precipitation Index(SPI), meteorological drought index, was used to evaluate the temporal and spatial assessment of drought forecasting results for all cross Korea. For the drought forecasting, the Multi Layer Perceptron-Artificial Neural Network (MLP-ANN) was selected and the drought forecasting was performed according to different forecasting lead time for SPI (3) and SPI (6). The precipitation data observed in 59 gaging stations of Korea Meteorological Adminstration (KMA) from 1976~2015. For the performance evaluation of the drought forecasting, the binary classification confusion matrix, such as evaluating the status of drought occurrence based on threshold, was constituted. Then Receiver Operating Characteristics (ROC) score and F score according to conditional probability are computed. As a result of ROC analysis on forecasting performance, drought forecasting performance, of applying the MLP-ANN model, shows satisfactory forecasting results. Consequently, two-month and five-month leading forecasts were possible for SPI (3) and SPI (6), respectively.

Study on the Hand Gesture Recognition System and Algorithm based on Millimeter Wave Radar (밀리미터파 레이더 기반 손동작 인식 시스템 및 알고리즘에 관한 연구)

  • Lee, Youngseok
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.3
    • /
    • pp.251-256
    • /
    • 2019
  • In this paper we proposed system and algorithm to recognize hand gestures based on the millimeter wave that is in 65GHz bandwidth. The proposed system is composed of millimeter wave radar board, analog to data conversion and data capture board and notebook to perform gesture recognition algorithms. As feature vectors in proposed algorithm. we used global and local zernike moment descriptor which are robust to distort by rotation of scaling of 2D data. As Experimental result, performance of the proposed algorithm is evaluated and compared with those of algorithms using single global or local zernike descriptor as feature vectors. In analysis of confusion matrix of algorithms, the proposed algorithm shows the better performance in comparison of precision, accuracy and sensitivity, subsequently total performance index of our method is 95.6% comparing with another two mehods in 88.4% and 84%.

Predicting defects of EBM-based additive manufacturing through XGBoost (XGBoost를 활용한 EBM 3D 프린터의 결함 예측)

  • Jeong, Jahoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.5
    • /
    • pp.641-648
    • /
    • 2022
  • This paper is a study to find out the factors affecting the defects that occur during the use of Electron Beam Melting (EBM), one of the 3D printer output methods, through data analysis. By referring to factors identified as major causes of defects in previous studies, log files occurring between processes were analyzed and related variables were extracted. In addition, focusing on the fact that the data is time series data, the concept of a window was introduced to compose variables including data from all three layers. The dependent variable is a binary classification problem with the presence or absence of defects, and due to the problem that the proportion of defect layers is low (about 4%), balanced training data were created through the SMOTE technique. For the analysis, I use XGBoost using Gridsearch CV, and evaluate the classification performance based on the confusion matrix. I conclude results of the stuy by analyzing the importance of variables through SHAP values.

Development of Smart driving monitoring device for Personal Mobility through Confusion Matrix verification

  • Han, Ju-Wan;Park, Seong-Hyun;Sim, Chae-Hyeon;Whang, Ju-Won
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.2
    • /
    • pp.61-69
    • /
    • 2022
  • As the delivery industry grew around the restaurant industry along with the COVID-19 situation, the number of delivery workers increased significantly. Along with that, new forms of delivery using personal mobility (PM) also emerged and two-wheeled or PM-related accidents are steadily increasing. This study manufactures a PM's driving analysis device to establish a safe delivery monitoring environment. This system was constructed to process data collected from the driving analysis device and through a cloud server, which would recognize and record special situations (acceleration/deceleration, speed bump) that could occur during the PM's driving situation. As a result, the angular speed, acceleration, and geomagnetic values collected from the IMU in the device were able to determine whether to drive, drive on the sidewalk, and drive on the speed bump. This technology was able to achieve approximately 1600 times more driving information storage efficiency than conventional image-based recording devices.

Real-time 3D Feature Extraction Combined with 3D Reconstruction (3차원 물체 재구성 과정이 통합된 실시간 3차원 특징값 추출 방법)

  • Hong, Kwang-Jin;Lee, Chul-Han;Jung, Kee-Chul;Oh, Kyoung-Su
    • Journal of KIISE:Software and Applications
    • /
    • v.35 no.12
    • /
    • pp.789-799
    • /
    • 2008
  • For the communication between human and computer in an interactive computing environment, the gesture recognition has been studied vigorously. The algorithms which use the 2D features for the feature extraction and the feature comparison are faster, but there are some environmental limitations for the accurate recognition. The algorithms which use the 2.5D features provide higher accuracy than 2D features, but these are influenced by rotation of objects. And the algorithms which use the 3D features are slow for the recognition, because these algorithms need the 3d object reconstruction as the preprocessing for the feature extraction. In this paper, we propose a method to extract the 3D features combined with the 3D object reconstruction in real-time. This method generates three kinds of 3D projection maps using the modified GPU-based visual hull generation algorithm. This process only executes data generation parts only for the gesture recognition and calculates the Hu-moment which is corresponding to each projection map. In the section of experimental results, we compare the computational time of the proposed method with the previous methods. And the result shows that the proposed method can apply to real time gesture recognition environment.

Mapping Technique for Flood Vulnerable Area Using Surface Runoff Mechanism (지표유출메커니즘을 활용한 홍수취약지구 표출 기법)

  • LEE, Jae-Yeong;HAN, Kun-Yeun;KIM, Hyun-Il
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.22 no.4
    • /
    • pp.181-196
    • /
    • 2019
  • Floods can be caused by a variety of factors, and the main cause of floods is the exceeding of urban drainage system or river capacity. In addition, rainfall frequently occurs that causes large watershed runoff. Since the existing methodology of preparing for flood risk map is based on hydraulic and hydrological modeling, it is difficult to analyse for a large area because it takes a long time due to the extensive data collection and complex analysis process. In order to overcome this problem, this study proposes a methodology of mapping for flood vulnerable area that considered the surface runoff mechanism. This makes it possible to reduce the time and effort required to estimate flood vulnerabilities and enable detailed analysis of large areas. The target area is Seoul, and it was confirmed that flood damage is likely to occur near selected vulnerable areas by verifying using 2×2 confusion matrix and ROC curve. By selecting and prioritizing flood vulnerable areas through the surface runoff mechanism proposed in this study, the establishment of systematic disaster prevention measures and efficient budget allocation will be possible.

Evaluation of Grid-Based ROI Extraction Method Using a Seamless Digital Map (연속수치지형도를 활용한 격자기준 관심 지역 추출기법의 평가)

  • Jeong, Jong-Chul
    • Journal of Cadastre & Land InformatiX
    • /
    • v.49 no.1
    • /
    • pp.103-112
    • /
    • 2019
  • Extraction of region of interest for satellite image classification is one of the important techniques for efficient management of the national land space. However, recent studies on satellite image classification often depend on the information of the selected image in selecting the region of interest. This study propose an effective method of selecting the area of interest using the continuous digital topographic map constructed from high resolution images. The spatial information used in this research is based on the digital topographic map from 2013 to 2017 provided by the National Geographical Information Institute and the 2015 Sejong City land cover map provided by the Ministry of Environment. To verify the accuracy of the extracted area of interest, KOMPSAT-3A satellite images were used which taken on October 28, 2018 and July 7, 2018. The baseline samples for 2015 were extracted using the unchanged area of the continuous digital topographic map for 2013-2015 and the land cover map for 2015, and also extracted the baseline samples in 2018 using the unchanged area of the continuous digital topographic map for 2015-2017 and the land cover map for 2015. The redundant areas that occurred when merging continuous digital topographic maps and land cover maps were removed to prevent confusion of data. Finally, the checkpoints are generated within the region of interest, and the accuracy of the region of interest extracted from the K3A satellite images and the error matrix in 2015 and 2018 is shown, and the accuracy is approximately 93% and 72%, respectively. The accuracy of the region of interest can be used as a region of interest, and the misclassified region can be used as a reference for change detection.

A Study on the Design of Supervised and Unsupervised Learning Models for Fault and Anomaly Detection in Manufacturing Facilities (제조 설비 이상탐지를 위한 지도학습 및 비지도학습 모델 설계에 관한 연구)

  • Oh, Min-Ji;Choi, Eun-Seon;Roh, Kyung-Woo;Kim, Jae-Sung;Cho, Wan-Sup
    • The Journal of Bigdata
    • /
    • v.6 no.1
    • /
    • pp.23-35
    • /
    • 2021
  • In the era of the 4th industrial revolution, smart factories have received great attention, where production and manufacturing technology and ICT converge. With the development of IoT technology and big data, automation of production systems has become possible. In the advanced manufacturing industry, production systems are subject to unscheduled performance degradation and downtime, and there is a demand to reduce safety risks by detecting and reparing potential errors as soon as possible. This study designs a model based on supervised and unsupervised learning for detecting anomalies. The accuracy of XGBoost, LightGBM, and CNN models was compared as a supervised learning analysis method. Through the evaluation index based on the confusion matrix, it was confirmed that LightGBM is most predictive (97%). In addition, as an unsupervised learning analysis method, MD, AE, and LSTM-AE models were constructed. Comparing three unsupervised learning analysis methods, the LSTM-AE model detected 75% of anomalies and showed the best performance. This study aims to contribute to the advancement of the smart factory by combining supervised and unsupervised learning techniques to accurately diagnose equipment failures and predict when abnormal situations occur, thereby laying the foundation for preemptive responses to abnormal situations. do.

A Comparative Study of Reservoir Surface Area Detection Algorithm Using SAR Image (SAR 영상을 활용한 저수지 수표면적 탐지 알고리즘 비교 연구)

  • Jeong, Hagyu;Park, Jongsoo;Lee, Dalgeun;Lee, Junwoo
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_3
    • /
    • pp.1777-1788
    • /
    • 2022
  • The reservoir is a major water supply source in the domestic agricultural environment, and the monitoring of water storage of reservoirs is important for the utilization and management of agricultural water resource. Remote sensing via satellite imagery can be an effective method for regular monitoring of widely distributed objects such as reservoirs, and in this study, image classification and image segmentation algorithms are applied to Sentinel-1 Synthetic Aperture Radar (SAR) imagery for water body detection in 53 reservoirs in South Korea. Six algorithms are used: Neural Network (NN), Support Vector Machine (SVM), Random Forest (RF), Otsu, Watershed (WS), and Chan-Vese (CV), and the results of water body detection are evaluated with in-situ images taken by drones. The correlations between the in-situ water surface area and detected water surface area from each algorithm are NN 0.9941, SVM 0.9942, RF 0.9940, Otsu 0.9922, WS 0.9709, and CV 0.9736, and the larger the scale of reservoir, the higher the linear correlation was. WS showed low recall due to the undetected water bodies, and NN, SVM, and RF showed low precision due to over-detection. For water body detection through SAR imagery, we found that aquatic plants and artificial structures can be the error factors causing undetection of water body.