DOI QR코드

DOI QR Code

Mapping Technique for Flood Vulnerable Area Using Surface Runoff Mechanism

지표유출메커니즘을 활용한 홍수취약지구 표출 기법

  • LEE, Jae-Yeong (Dept. of Land, Water and Environment Research, Korea Institute of Civil Engineering and Building Technology) ;
  • HAN, Kun-Yeun (School of Architectural, Civil, Environmental, and Energy Engineering, Kyungpook National University) ;
  • KIM, Hyun-Il (School of Architectural, Civil, Environmental, and Energy Engineering, Kyungpook National University)
  • 이재영 (한국건설기술연구원 국토보전연구본부) ;
  • 한건연 (경북대학교 건설환경에너지공학부) ;
  • 김현일 (경북대학교 건설환경에너지공학부)
  • Received : 2019.09.24
  • Accepted : 2019.12.20
  • Published : 2019.12.31

Abstract

Floods can be caused by a variety of factors, and the main cause of floods is the exceeding of urban drainage system or river capacity. In addition, rainfall frequently occurs that causes large watershed runoff. Since the existing methodology of preparing for flood risk map is based on hydraulic and hydrological modeling, it is difficult to analyse for a large area because it takes a long time due to the extensive data collection and complex analysis process. In order to overcome this problem, this study proposes a methodology of mapping for flood vulnerable area that considered the surface runoff mechanism. This makes it possible to reduce the time and effort required to estimate flood vulnerabilities and enable detailed analysis of large areas. The target area is Seoul, and it was confirmed that flood damage is likely to occur near selected vulnerable areas by verifying using 2×2 confusion matrix and ROC curve. By selecting and prioritizing flood vulnerable areas through the surface runoff mechanism proposed in this study, the establishment of systematic disaster prevention measures and efficient budget allocation will be possible.

홍수는 다양한 원인으로 발생할 수 있으며, 주로 내수배제 불량이나 외수범람을 홍수의 주요 원인으로 주목하고 있으며, 대규모 유역 유출을 발생시키는 강우 또한 빈번히 발생하고 있는 실정이다. 기존의 홍수위험지도는 수리·수문학적 모델링을 통한 분석을 기반으로 하여 방대한 자료의 수집과 복잡한 분석과정으로 인한 장시간의 소요시간으로 넓은 지역에 대한 홍수위험지도 작성이 어려운 실정이다. 본 연구에서는 이를 극복하고자 홍수위험도 산정 시 필요한 시간과 노력을 절감하고 광범위한 지역에 대한 세밀한 분석을 실시하기 위해 지표유출메커니즘을 고려한 홍수취약지구 선정 기법을 제안하고자 한다. 홍수취약지구 선정 기법을 대상지역인 서울시에 적용하여 2×2 혼동행렬과 ROC(Receiver Operation Characteristic) 곡선을 활용하여 검증함으로써 선정된 취약지구 인근에서 침수피해가 발생하기 쉽다는 것을 확인할 수 있었다. 본 연구의 결과를 이용하여 관리 우선순위를 반영하여 효율적인 예산 배분과 체계적인 방재대책 수립이 가능할 것으로 판단된다.

Keywords

References

  1. Arrighi, C., Alcérreca-Huerta, J.C., Oumeraci, H. and Castelli, F. 2015. Drag and Lift Contribution to the Incipient Motion of Partly Submerged Flooded Vehicles. Journal of Fluids and Structures, 57:170-184 https://doi.org/10.1016/j.jfluidstructs.2015.06.010
  2. Arrighi, C., Oumeraci, H. and Castelli, F. 2017. Hydrodynamics of Pedestrians' Instability in Floodwaters. Hydrology and Earth System Sciences, 21:515-531 https://doi.org/10.5194/hess-21-515-2017
  3. Beven, K.J. and Kirkby, M.J. 1979. A Physically Based Variable Contributing Area Model of Basin Hydrology. Hydrological Sciences Journal, 24(1):43-69 https://doi.org/10.1080/02626667909491834
  4. Dehotin, J., Breil, P. Braud, I., Lavenne, A. D., Lagouy, M. and Sarrazin, B. 2015. Detecting Surface Runoff Location in a Small Catchment Using Distributed and Simple Observation Method. Journal of Hydrology, 525:113-129 https://doi.org/10.1016/j.jhydrol.2015.02.051
  5. DeLong, E.R., DeLong, D.M. and Clarke-Pearson, D.L. 1988. Comparing the Areas Under Two or More Correlated Receiver Operating Characteristic. Biometrics, 44(3):837-845 https://doi.org/10.2307/2531595
  6. Hewlett, J.D. and Hibbert, A.R. 1967. Factors Affecting the Response of Small Watersheds to Precipitation in Humid Areas. Forest Hydrology, 33(2):275-290
  7. Horton, R.E. 1932. Drainage-Basin Characteristics. American Geophysical Union, 13(1):350-361 https://doi.org/10.1029/TR013i001p00350
  8. Horton, R.E. 1933. The Role of Infiltration in the Hydrologic Cycle. American Geophysical Union, 14(1):446-460 https://doi.org/10.1029/TR014i001p00446
  9. Kim, T.H., Han, K.Y. and Park, J.H. 2016. New Flood Hazard Mapping using Runoff Mechanism on Gamcheon Watershed, 36(6):1011-1021 https://doi.org/10.12652/Ksce.2016.36.6.1011
  10. Lagadec, L.R., Patrice, P., Braud, I., Charzelle, B., Moulin, L., Dehotin, J. and Breil, P. 2016. Description and Evaluation of a Surface Runoff Susceptibility Mapping Method. Journal of Hydrology, 541(A):405-509
  11. Lee, J.S. and Choi, H.I. 2016. Flood Vulnerability Index Estimated by Comparing Analysis Methods of Flood Damage Data, 16(2):427-435 https://doi.org/10.9798/KOSHAM.2016.16.2.427
  12. Lee, J.Y., Nam, M.J., Kwon, H.H. and Kim, K.Y. 2016. Flood Risk Estimation with Scenario-based, Coupled River-overland Hydrodynamic Modeling, 49(9):773-787 https://doi.org/10.3741/JKWRA.2016.49.9.773
  13. Zhang, J., Okada, N., Tatano, H. and Hayakawa, S. 2002 Risk Assessment and Zoning of Flood Damage Caused by Rainfall in Yamaguchi Prefecture, Japan. Flood Defence 2002. Science Press, 162-170.