• Title/Summary/Keyword: 호흡기모델

Search Result 94, Processing Time 0.029 seconds

The Effects of Treatment with Cyclophosphamide and Methylprednisolone on Expression of Endothelin-1 in Unilateral Instillation of Paraquat-induced Pulmonary Fibrosis in Guinea Pigs (Paraquat의 편측 기관지 주입에 의해 유발된 폐섬유화증에서 Cyclophosphamide와 Methylprednisolone의 투여에 따른 Endothelin-1의 발현의 변화)

  • Lee, So-Ra;Jeong, Hye-Cheol;Kim, Kyung-Kyu;Lee, Sang-Youb;Lee, Sin-Hyung;Cho, Jae-Youn;Shim, Jae-Jeong;In, Kwang-Ho;Choi, Jong-Sang;Yoo, Se-Hwa;Kang, Kyung-Ho
    • Tuberculosis and Respiratory Diseases
    • /
    • v.46 no.6
    • /
    • pp.775-785
    • /
    • 1999
  • Background : The herbicide paraquat can cause severe lung injury and fibrosis in experimental animals. In this study we have investigated the changes in lung endothelin-1(Et-1) levels and immunohistochemical localization in relation to treatment with cyclophosphamide and methylprednisolone in paraquat induced pulmonary fibrosis in guinea pigs. Material and methods : 29 male Hartley guinea pigs were divided into 4 groups. Group I was normal control. Paraquat was instilled into the lung of guinea pig of group II, III and IV unilaterally. Group II was treated with cyclophosphamide and methylprednisolone. Group III was treated with methlprednisolone. Group IV was not treated. The degree of fibrosis was evaluated by H-E stains and Masson's trichrome stains and cell activity was assessed by Et-1 immunohistochemical stains. Statistical evaluation was performed using the Kruskawallis oneway analysis. Results : Paraquat induced an increase in numbers of fibroblasts and total amount of lung collagen in Group IV compared to the normal controls. There was no significant difference in total numbers of fibroblasts between any of paraquat instilled groups, but there was significant increase in total amount of collagen in Group IV compared to group II and III (p<0.05). The treatment of cyclophosphamide and methyprednisolone suppressed the growths of both fibroblasts and collagen, but this suppression was stastically significant only in the case of collagen Et-1 immunoreactivities of bronchial epithelium, type II pneumocytes, endothelial cells and fibroblast in group II and III were decreased compared to those in group IV. Conclusion : These results demonstrate that Et-1 is an important contributing factor in the pathogenesis of pulmonary fibrosis. Et-1 is synthesized and released by bronchial epithelium, Type II pneumocyte, endothelial cells, alveolar macrophages and fibroblasts. Especially they are associated with alveolar macrophage and fibroblasts. We conclude that combined therapy of cyclophosphamide and methylprednisolone are more effective in the control of Et-1 expression and collagen deposition.

  • PDF

Superoxide Dismutase Gene Expression in the Endotoxin-Treated Rat Lung (내독소에 의한 백서 폐장의 Superoxide Dismutase 유전자 발현에 관한 연구)

  • Yoo, Chul-Gyu;Suh, Gee-Young;Kim, Young-Whan;Han, Sung-Koo;Shim, Young-Soo;Kim, Keun-Youl;Han, Yong-Chol
    • Tuberculosis and Respiratory Diseases
    • /
    • v.41 no.3
    • /
    • pp.215-221
    • /
    • 1994
  • Background: It is well known that oxygen free radicals(OFR) play a vital role in the various type of acute lung injury. Among various antioxidant defense mechanisms, the superoxide dismutases(SOD) are thought to be the first line of antioxidant defense by catalyzing the dismutation of two superoxide radicals to yield hydrogen peroxide and oxygen. Eukaryotic cells contain two types of intracellular SOD : cytosolic, dimeric copper/zinc- containing enzyme(CuZnSOD) and mitochondrial, tetrameric manganese-containing enzyme(MnSOD). The purpose of this study is to evaluate the time-dependent gene expression of MnSOD and CuZnSOD in the endotoxin-treated rats, and to compare with the manifestations of LPS-induced acute lung injury in rats. Methods: Total RNA from rat lung was isolated using single step phenol extraction 0, 1, 2, 4, 6, 12, 18, 24 hours after E. coli endotoxin injection(n=3, respectively). RNA was separated by formaldehyde-containing 1.2% agarose gels elctrophoresis, transblotted, baked, prehybridized, and hybridized with $^{32}P$-labeled cDNA probes for rat MnSOD and CuZnSOD, which were kindly donated by Dr. Ho(Duke University, Durham, NC, USA). The probes were labeled by nick translation. Blots were washed and autoradiography were quantitated using laser densitometry. Equivalent amounts of total RNA/gel were assessed by monitoring 28S and 18S rRNA. Results: Endotoxin caused a rise in steady-state MnSOD mRNA levels by 4h with peak mRNA accumulation by 6h. Continued MnSOD mRNA expression was observed at 12h. CuZnSOD mRNA expression was observed from 1h to 24h with peak levels by 18h. Conclusion: These results suggest that SOD palys an important defensive role in the endotoxin-induced acute lung injury in rats.

  • PDF

Inhibition of Viability and Genetic Change in Hypoxia-treated Lung Pericytes (허파혈관주위세포에서 저산소증에 의한 생존능의 억제와 유전자 발현의 변화)

  • Shin, Jong Wook;Kim, Kae-Young;Lee, Young Woo;Jung, Jae Woo;Lee, Byoung Jun;Kim, Jae-Yeol;Jo, Inho;Park, In Won;Choi, Byoung Whui
    • Tuberculosis and Respiratory Diseases
    • /
    • v.57 no.1
    • /
    • pp.37-46
    • /
    • 2004
  • Background : Lung pericytes are important constituent cells of blood-air barrier in pulmonary microvasculature. These cells take part in the control of vascular contractility and permeability. In this study, it was hypothesized that change of lung pericytes might be attributable to pathologic change in microvasculature in acute lung injury. The purpose of this study was how hypoxia change proliferation and genetic expression in lung pericytes. Methods : From the lungs of several Sprague-Dawley rats, performed the primary culture of lung pericytes and subculture. Characteristics of lung pericytes were confirmed with stellate shape in light microscopy and immunocytochemistry. 2% concentration of oxygen and $200{\mu}M$ $CoCl_2$ were treated to cells. Tryphan blue method and reverse transcription-polymerase chain reaction were done. Results : 1. We established methodology for primary culture of lung pericytes. 2. Hypoxia inhibited cellular proliferation in pericytes. 3. Hypoxia could markedly induce vascular endothelial growth factor(VEGF) and smad-2. 4. Hypoxia-inducible factor-$1{\alpha}$(HIF-$1{\alpha}$) was also induced by 2% oxygen. Conclusion : Viability of lung pericytes are inhibited by hypoxia. Hypoxia can stimulate expression of hypoxia-responsive genes. Pericytic change may be contributed to dysfunction of alveolar-capillary barrier in various pulmonary disorders.

Metalloproteinase Plays a Role in Mucin Secretion (Mucin 분비에 영향을 미치는 Metalloproteinase)

  • Oh, Yeon-Mok;Choi, Hee Jin;Shim, Tae Sun;Lee, Sang Do;Kim, Woo Sung;Kim, Dong-Soon
    • Tuberculosis and Respiratory Diseases
    • /
    • v.56 no.3
    • /
    • pp.289-296
    • /
    • 2004
  • Background : Mucus hypersecretion in the patients with airway diseases represents poor prognosis as well as discomfort. However, there is no known therapy for its effective control. One important component of mucus is mucin, a glycosylated protein, which endows mucus with viscosity. We studied whether a proteinase has a role in mucin secretion and if so, which. Methods : (1) Inhibition of mucin secretion Group-specific proteinase inhibitors were tested to evaluate whether a proteinase belonging to a group of proteinases plays a role in mucin secretion. Phenylmethylsulfonyl fluoride(PMSF, a serine proteinase inhibitor), E-64(a cysteine proteinase inhibitor), Pepstatin(an aspartic proteinase inhibitor) and 1, 10-Phenanthroline(a metalloproteinase inhibitor) were treated into the Calu-3 cell line for 24 hours. The enzyme linked immunoabsorbant assay(ELISA) for MUC5AC was performed to evaluate the amount of mucin secretion and to compare with a control. (2) Stimulation of mucin secretion Matrix metalloproteinase-9(MMP-9), MMP-12 and TACE(TNF-alpha converting enzyme), which are known to be related with airway diseases, were used to be treated into Calu-3 for 24 hours. ELISA for MUC5AC was performed to evaluate the amount of mucin secretion and to compare with the controls. Results : (1) PMSF($10^{-4}M$), E-64($10^{-4}M$), Pepstatin($10^{-6}M$) and 1, 10-Phenanthroline($10^{-4}M$) reduced the MUC5AC secretion by $1{\pm}4.9%$(mean${\pm}$standard deviation; P=1.0 compared with the control), $-6{\pm}3.9%$(P=0.34), $-13{\pm}9.7%$(P=0.34) and $41{\pm}8.2%$(P=0.03), respectively. (2) The amounts of MUC5AC secretion stimulated by MMP-9(250ng/ml), MMP-12(100ng/ml) and TACE(200ng/ml) were $103{\pm}6%$(P=0.39), $102{\pm}8%$(P=1.0) and $107{\pm}13%$(P=0.39), respectively, compared with the controls. Conclusion : Metalloproteinase(s) is (are) suggested to play a role in mucin secretion. It appears that metalloproteinases, other than MMP-9, MMP-12 or TACE, affect the mucin secretion in this in vitro model.

Anti-inflammatory Effects of Pentoxifylline and Neutrophil Elastase Inhibitor on Lipopolysaccharide-Induced Acute Lung Injury In Vitro (In Vitro 내독소 유도성 급성 폐손상에서 Pentoxifylline과 Neutrophil Elastase Inhibitor의 항염효과)

  • Kim, Young-Kyoon;Kim, Seung-Joon;Park, Yong-Keun;Kim, Seok-Chan;Kim, Kwan-Hyoung;Moon, Hwa-Sik;Song, Jeong-Sup;Park, Sung-Hak;Kim, Sang-Ho
    • Tuberculosis and Respiratory Diseases
    • /
    • v.49 no.6
    • /
    • pp.691-702
    • /
    • 2000
  • Background : Acute lung injury (ALI) is a commonly encountered respiratory disease and its prognosis is poor when the treatment is not provided promptly and properly. However no specific pharmacologic treatment is currently available for ALI, although recently several supportive drugs have been under scrutiny. We studied anti-inflammatory effects of pentoxifylline (PF), a methylated xanthine, and ONO-5046, a synthetic neutrophil elastase inhibitor on lipopolysaccharide (LPS)-induced ALI in vitro. Methods : To establish an in vitro model of LPS-induced ALI, primary rat alveolar macrophages and peripheral neutrophils in various ratios (1:0, 5:1, 1:1, 1:5, 0:1) were co-cultured with transformed rat alveolar epithelial cells (L2 cell line) or vascular endothelial cells (IP2-E4 cell line) under LPS stimulation. Each experiment was divided into five groups-control, LPS, LPS+PF, LPS+ONO, and LPS+PF+ONO. We compared LPS-induced superoxide anion productions from primary rat alveolar macrophages and peripheral neutrophils in various ratios, and the resultant cytotoxicity on L2 cells or IP2-E4 cells between groups. In addition we also compared the productions of tumor necrosis factor (TNF)-$\alpha$ interleukin (IL)-$1{\beta}$, monocyte chemotactic protein(MCP)-1, IL-6, and IL-10 as well as mRNA expressions of TNF-$\alpha$ inducible nitric oxide synthetase(iNOS), and MCP-1 from LPS-stimulated primary rat alveolar macrophages between groups. Results : (1) PF and ONO-5046 in each or both showed a trend to suppress LPS-induced superoxide anion productions from primary rat alveolar macrophages and peripheral neutrophils regardless of their ratio, except for the LPS+PF+ONO group with the 1:5 ratio, although statistical significance was limited to a few selected experimental conditions. (2) PF and ONO-5046 in each or both showed a trend to prevent IP2-E4 cells from LPS-induced cytotoxicity by primary rat alveolar macrophages and peripheral neutrophils regardless their ratio, although statistical significance was limited to a few selected experimental conditions. the effects of PF and/or ONO-5046 on LPS-induced L2 cell cytotoxicity varied according to experimental conditions. (3) PF showed a trend to inhibit LPS-induced productions of INF-$\alpha$ MCP-1, and IL-10 from primary rat alveolar macrophages. ONO-5046 alone didnot affect the LPS-induced productions of proinflammatory cytokines from primary rat alveolar macrophages but the combination of PF and ONO-5046 showed a trend to suppress LPS-induced productions of INF-$\alpha$ and IL-10 PF and ONO-5046 in each or both showed a trend to increase LPS-induced IL-$\beta$ and IL-6 productions from primary rat alveolar macrophages. (4) PF and ONO-5046 in each or both showed a trend to attenuate LPS-induced mRNA expressions of TNF-$\alpha$ and MCP-1 from primary rat alveolar macrophages but at the same time showed a trend increase iNOS mRNA expression. Conclusion : These results suggest that PF and ONO-5046 may play a role in attenuating inflammation in LPS-induced ALI and that further study is needed to use these drugs as a new supportive therapeutic strategy for ALI.

  • PDF

The Relationship Between the NF-${\kappa}B$ Activity and Anti-inflammatory Action of Surfactant in the Acute Lung Injury of Rats (백서의 급성폐손상에서 surfactant의 항염증작용과 호중구의 NK-${\kappa}B$ 활성과의 관계)

  • An, Chang-Hyeok;Cha, Young-Joo;Lee, Kyoung-Hee;Yoo, Chul-Gyu;Lee, Byoung-Jun;Jeong, Do-Young;Lee, Sang-Hoon;Shin, Jong-Wook;Kim, Jae-Yeol;Park, In-Won;Choi, Byoung-Whui
    • Tuberculosis and Respiratory Diseases
    • /
    • v.53 no.5
    • /
    • pp.519-529
    • /
    • 2002
  • Background : The therapeutic effects of surfactants on acute lung injury derive not only from their recruiting action on collapsed alveoli but also from their anti-inflammatory action in the alveolar sapce. This study evaluated the anti-inflammatory action of a surfactant in an acute lung injury model of rats by neutrophils were recollected from the BAL fluid and the NF-${\kappa}B$ activity of the neutrophilic nuclear protein was evaluated. Methods : Male Sprague-Dawley rats weighing approximately 300 gram were divided into 3 groups, which consisted of 6 rats respectively. In the control group, normal saline(3ml/kg) was instilled into the trachea twice with 30 minute interval. In two other groups, acute lung injury was induced by the intra-tracheal instillation of LPS(5mg/kg). Thirty minutes later, either a surfactant(ST group; 30mg/kg) or normal saline(NT group: 3ml/kg) was instilled via the trachea. Twenty-four hours after the LPS instillation, the BAL fluid was retrieved to measure the WBC count and cytokine(IL-$1{\beta}$ and IL-6) levels. The neutrophils were isolated from the BAL fluid and the nuclear protein was extracted to evaluate the NF-${\kappa}B$ activity using a eletrophoretic mobility shift assay(EMSA). Results : The WBC count of the BAL fluid of the ST group($3,221{\pm}1,914{\times}10^3/{\mu}l$) was higher than that of the control group($356{\pm}275{\times}10^3/{\mu}l$)(p<0.05) and lower than that of the NT group($5,561{\pm}1,757{\times}10^3/{\mu}l$)(p<0.05)). The BAL fluid level of IL-$1{\beta}$ from the NT group($2,064{\pm}1,082pg/ml$) was higher than those of the ST group($360{\pm}234pg/ml$)(p<0.05) and the control group(0pg/ml)p<0.05) and control group($49{\pm}62pg/ml$)(p<0.05). The NF-${\kappa}B$ activity of the neutrophilic nuclear protein in the ST group and NT group was similar. Conclusion : The surfactant, attenuates the alveolar inflammation in the acute lung injury of rats model. However, its anti-inflammatory action does no't appear to be mediated by the inhibition of NF-${\kappa}B$ activity.

The Effect of Surfactant on Neutrophil Apoptosis in Lipopolysaccharide Induced Acute Lung Injury in Rat (기관내 내독소 투여로 유도한 백서의 급성 폐손상 모델에서 surfactant가 호중구의 아포토시스에 미치는 영향)

  • Yoo, Ji-Hoon;Lee, Byoung-Jun;Jeong, Do-Young;Lee, Sang-Hoon;Shin, Jong-Wook;Kim, Jae-Yeol;Park, In-Won;Choi, Byoung-Whui
    • Tuberculosis and Respiratory Diseases
    • /
    • v.53 no.4
    • /
    • pp.409-419
    • /
    • 2002
  • Background : The therapeutic effects of surfactant on acute lung injury derive not only from its recruiting action on collapsed alveoli but also from its anti-inflammatory effects. Pro-apoptotic action on alveolar neutrophils represents one of the important anti-inflammatory mechanisms of surfactant. In the present study, we evaluated the effects of sufactant on the apoptosis of human peripheral and rat alveolar neutrophils. Methods : In the (Ed- the article is not definitely needed but it helps to separate the two prepositions 'in') in vitro study, human neutrophils were collected from healthy volunteers. An equal number of neutrophils ($1{\times}10^6$) (Ed-confirm) was treated with LPS (10, 100, 1000ng/ml), surfactant (10, 100, $1000{\mu}g/ml$), or a combination of LPS (1000ng/ml) and surfactant (10, 100, $1000{\mu}g/ml$). After incubation for 24 hours, the apoptosis of neutrophils was evaluated by Annexin V method. In the in vivo study, induction of acute lung injury in SD rats by intra-tracheal instillation of LPS (5mg/kg) was followed by intra-tracheal administration of either surfactant (30mg/kg) or normal saline (5ml/kg). Tenty-four hours after LPS instillation, alveolar neutrophils were collected and the apoptotic rate was evaluated by Annexin V method. In addition, changes of the respiratory mechanics of rats (respiratory rate, tidal volume, and airway resistance) were evaluated with one chamber body plethysmography before, and 23 hours after, LPS instillation. Results : in the in vitro study, LPS treatment decreased the apoptosis of human peripheral blood neutrophils (control: $47.4{\pm}5.0%$, LPS 10ng/ml; $30.6{\pm}10.8%$, LPS 100ng/ml; $27.5{\pm}9.5%$, LPS 1000ng/ml; $24.4{\pm}7.7%$). The combination of low to moderate doses of surfactant with LPS promoted apoptosis (LPS 1000ng/ml + Surf $10{\mu}g/ml$; $36.6{\pm}11.3%$, LPS 1000ng/ml +Surf $100{\mu}g/ml$; $41.3{\pm}11.2%$). The high dose of surfactant ($1000{\mu}g/ml$) decreased apoptosis ($24.4{\pm}7.7%$) and augmented the anti-apoptotic effect of LPS (LPS 1000ng/ml + Surf $1000P{\mu}g/ml$; $19.8{\pm}5.4%$). In the in vivo study, the apoptotic rate of alveolar neutrophils of surfactant-treated rats was higher than that of normal saline-treated rats ($6.03{\pm}3.36%$ vs. $2.95{\pm}0.58%$). The airway resistance (represented by Penh) of surfactant-treated rats was lower than that of normal saline-treated rats at 23 hours after LPS injury ($2.64{\pm}0.69$ vs. $4.51{\pm}2.24$, p<0.05). Conclusion : Surfactant promotes the apoptosis of human peripheral blood and rat alveolar neutrophils. Pro-apoptotic action on neutrophils represents one of the important anti-inflammatory mechanisms of surfactant.

Function of the Neuronal $M_2$ Muscarinic Receptor in Asthmatic Patients (천식 환자에서 $M_2$ 무스카린성 수용체 기능에 관한 연구)

  • Kwon, Young-Hwan;Lee, Sang-Yeup;Bak, Sang-Myeon;Lee, Sin-Hyung;Shin, Chol;Cho, Jae-Youn;Shim, Jae-Jeong;Kang, Kyung-Ho;Yoo, Se-Hwa;In, Kwang-Ho
    • Tuberculosis and Respiratory Diseases
    • /
    • v.49 no.4
    • /
    • pp.486-494
    • /
    • 2000
  • Background : The dominant innervation of airway smooth muscle is parasympathetic fibers which are carried in the vagus nerve. Activation of these cholinergic nerves releases acetylcholine which binds to $M_3$ muscarinic receptors on the smooth muscle causing bronchocontraction. Acetylcholine also feeds back onto neuronal $M_2$ muscarinic receptors located on the postganglionic cholinergic nerves. Stimulation of these receptors further inhibits acetylcholine release, so these $M_2$, muscarinic receptors act as autoreceptors. Loss of function of these $M_2$ receptors, as it occurs in animal models of hyperresponsiveness, leads to an increase in vagally mediated hyperresponsiveness. However, there are limited data pertaining to whether there are dysfunctions of these receptors in patients with asthma. The aim of this study is to determine whether there are dysfunction of $M_2$ muscarinic receptors in asthmatic patients and difference of function of these receptors according to severity of asthma. Method : We studied twenty-seven patients with asthma who were registered at Pulmonology Division of Korea University Hospital. They all met asthma criteria of ATS. Of these patients, eleven patients were categorized as having mild asthma, eight patients moderate asthma and eight patients severe asthma according to severity by NAEPP Expert Panel Report 2(1997). All subjects were free of recent upper respiratory tract infection within 2 weeks and showed positive methacholine challenge test ($PC_{20}$<16mg/ml). Methacholine provocation tests were performed twice on separate days allowing for an interval of one week. In the second test, pretreatment with the $M_2$ muscarinic receptor agonist pilocarpine($180{\mu}g$) through inhalation was performed be fore the routine procedures. Results : Eleven subjects with mild asthma and eight subjects with moderate asthma showed significant increase of $PC_{20}$ from 5.30$\pm$5.23mg/ml(mean$\pm$SD) to 20.82$\pm$22.56mg/ml(p=0.004) and from 2.79$\pm$1.51mg/ml to 4.67$\pm$3.53mg/ml(p=0.012) after pilocarpine inhalation, respectively. However, in the eight subjects with severe asthma significant increase of $PC_{20}$ from l.76$\pm$1.50mg/ml to 3.18$\pm$4.03mg/ml(p=0.161) after pilocarpine inhalation was not found. Conclusion : In subjects with mild and moderate asthma, function of $M_2$ muscarinic receptors was normal, but there was a dysfunction of these receptors in subjects with severe asthma. ηlese results suggest that function of $M_2$ muscarinic receptors is different according to severity of asthma.

  • PDF

The Increased Expression of Gelatinolytic Proteases Due to Cigarette Smoking Exposure in the Lung of Guinea Pig (기니픽에서 흡연 노출에 의한 젤라틴 분해 단백 효소의 발현 양상에 관한 연구)

  • Kang, Min-Jong;Lee, Jae-Ho;Yoo, Chul-Gyu;Lee, Choon-Taek;Chung, Hee-Soon;Seo, Jeong-Wook;Kim, Young-Whan;Han, Sung-Koo;Shim, Young-Soo
    • Tuberculosis and Respiratory Diseases
    • /
    • v.50 no.4
    • /
    • pp.426-436
    • /
    • 2001
  • Background : Chronic obstructive pulmonary disease(COPD) is one of the major contributors to morbidity and mortality among the adult population. Cigarette smoking(CS) is undoubtedly the single most important factor in the pathogenesis of COPD. However, its mechanism is unclear. The current hypothesis regarding the pathogenesis of COPD postulates that an imbalance between proteases and antiproteases leads to the destructive changes in the lung parenchyma. This study had two aims. First, to evaluate the effect of CS exposure on histologic changes of the lung parenchyme, and second, to evaluate the effect of CS exposure on the expression of the gelatinolytic enzymes in BAL fluid cells in guinea pigs. Methods : Two groups of five guinea pigs were exposed to the whole smoke of 20 commercial cigarettes per day, 5 hours/day, 5 days/week, for 6weeks, and 12 weeks, respectively, using a smoking apparatus. Five age-matched guinea pigs exposed to room air were used as controls. Five or more sections were microscopically extamined(${\times}400$) and the number of cellular infiltration of the alveolar wall was measured in order to evaluate the effect of CS exposure on the histologic changes of lung parenchyme. The statistical significance was analyzed by a linear regression method. To evaluate the expression of the gelatinolytic enzymes in intraalveolar cells, BAL fluid was obtained and the intraalveolar cells were separated by centrifugation (500 g for 10 min at $4^{\circ}C$). Two sets of culture plates were loaded with $1{\times}10^6$ intraalveolar cells. One plate, contained O.1mM EDTA, a inhibitor of matrix metalloproteases(MMPs), and the other plate had no EDTA. Both plates were incubated for 48 hours at $37^{\circ}C$. After incubation, gelatinolytic protease expression in the supernatants was analyzed by gelatin zymography. Results : At the end of CS exposure, the level of blood carboxy Hb had increased significantly(4.1g/dl in control group, 24g/dl immediately after CS exposure, 18g/dl 30 min after CS exposure, 15g/dl 1 hour after CS exposure). Alveolar inflammatory cells were identified in the CS exposed guinea pigs. The number of alveolar cellular cells observed in a microscopic field ($400{\times}$) was $121.4{\pm}7.2$, $158.0{\pm}20.2$, $196.8{\pm}32.8$, in the control, the 6 weeks, and the 12 weeks group, respectively. The increased extent of inflammatory cellular infiltration of the lung parenchema showed a statistically significant linear relationship with the duration of CS exposure(p=0.001, $r^2=0.675$). Several types of gelatinolytic enzymes in the intraalveolar cells of CS exposed guinea pigs were expressed, of which some were inhibited by EDT A. However, the gelatinolytic enzymes were not expressed in the control groups. Conclusion : CS exposure increases inflammatory cellular infiltration of the alveolar wall and the expression of gelatinolytic proteases in guinea pigs. EDTA inhibits some of the gelatinolytic proteases. These findings suggest a possibility that CS exposure may increase MMP expression in the lungs of guinea pigs.

  • PDF

Changes in Distribution and Morphology of Rat Alveolar Macrophage Subpopulations in Acute Hyperoxic Lung Injury Model (고농도 산소로 유발한 흰쥐의 급성폐손상모델에서 폐포대식세포 아형군의 분포와 형태 변화)

  • Shin, Yoon;Lee, Sang-Haak;Yoon, Hyoung-Kyu;Lee, Sook-Young;Kim, Seok-Chan;Kwon, Soon-Seog;Kim, Young-Kyoon;Kim, Kwan-Hyung;Moon, Hwa-Sik;Song, Jeong-Sup;Park, Sung-Hak
    • Tuberculosis and Respiratory Diseases
    • /
    • v.48 no.4
    • /
    • pp.478-486
    • /
    • 2000
  • Background : In acute lung injury, alveolar macrophages play a pivotal role in the inflammatory process during the initiation phase and in the reconstruction and fibrosis process during the later phase. Recently, it has been proven that alveolar macrophages are constituted by morphologically, biochemically and immunologically heterogenous cell subpopulations. The possibility of alterations to these characteristics of the alveolar macrophage population during lung disease has been raised. To investigate such a possibility a hyperoxic rat lung model was made to check the distributional and morphological changes of rat alveolar macrophage subpopulation in acute hyperoxic lung injury. Method : Alveolar macrophage were lavaged from normal and hyperoxic lung injury rats and separated by discontinuous gradients of percoll. After cell counts of each density fraction were accessed, the morphomeric analysis of alveolar macrophages was performed on cytocentrifuged preparations by transmission electron micrograph. Result : 1. The total alveolar macrophage cell count significantly increased up to 24 hours after hyperoxic challenge (normal control group $171.6{\pm}24.1{\times}10^5$, 12 hour group $194.8{\pm}17.9{\times}10^5$, 24 hour group $207.6{\pm}27.1{\times}10^5$, p<0.05). oHoHH However the 48 hour group ($200.0{\pm}77.8{\times}10^5$) did not show a significant difference. 2. Alveolar septal thickness significantly increased up to 24 hours after hyperoxic challenge(normal control group $0.7{\pm}0.2{\mu}m$, 12 hour group $1.5{\pm}0.4{\mu}m$, 24 hour group $2.3{\pm}0.4{\mu}m$, p<0.05). However the 48 hour group did not show further change ($2.5{\pm}0.4{\mu}m$). Number of interstitial macrophage markedly increased at 24 hour group. 3. Hypodense fraction(fraction 1 and fraction 2) of alveolar macrophage showed a significant increase following hyperoxic challenge ($\beta=0.379$.$\beta=0.694$. p<0.05) ; however, fraction 3 was rather decreased following the hyperoxic challenge($\beta=0.815$. p<0.05), and fraction 4 showed an irregular pattern. 4. Electron microscopic observation of alveolar macrophage from each fraction revealed considerable morphologic heterogeneity. Cells of the most dense subfraction(fraction 4) were small, round, and typically highly ruffled with small membrane pseudopods. Cells of the least dense fraction (fraction 1) were large and showed irregular eccentric nucleus and high number of heterogenous inclusions. Conclusion : In conclusion, these results suggest that specific hypodense alveolar macrophage subpopulation may play a an important role in an acute hyperoxic lung injury model But further study, including biochemical and immunological function of these subpopulations, is needed.

  • PDF