• 제목/요약/키워드: 호소 수질

Search Result 295, Processing Time 0.04 seconds

Characteristics of Water Quality at Main Streams and Lake Doam in Daegwallyeong Area (대관령 지역 주요 하천 및 도암호의 수질 특성)

  • Park, Kyeong-Hun;Kim, Byeong-Seok;Yun, Hye-Jeong;Ryu, Kyoung-Yul;Yun, Jeong-Chul;Choi, June-Yeol;Kim, Ki-Deog;Jin, Yong-Ik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.6
    • /
    • pp.882-889
    • /
    • 2012
  • This study was surveyed that water physiochemical characteristics and phytoplankton incidence of main stream and Lake Doam near to Daegwallyeong agricultural area. Based on above results, it was conducted to get information overall water characteristics in south Han upstream river. COD value of Lake Doam was $6.1mg\;L^{-1}$ and T-P (Total phosphorous) from there was $0.26mg\;L^{-1}$ which was higher than the value of grade VI based on lake water living environment standard. Suspended solid was an average of 9.77 NTU which was higher than value of lake living standard. Concentration of phytoplankton was over $2.0{\times}10^3Cell\;mL^{-1}$ from July to September. It was considered that cyanobacteria were occurred due to massive influx of nutrient material by high temperature and rainfall during this season. Compare to Ontario's sediment quality guidelines, T-N and T-P was middle value between LEL and SEL in Lake Doam. This value means that contamination in water is serious. Therefore, it is considered that systematic management was needed to reduce and block contamination source.

Evaluation and Application of QUAL2E and QUAL2K Models in Anyang Stream (안양천에서 QUAL2E와 QUAL2K 모델의 적용 및 평가)

  • Jung, Sung-Soo;Kim, Kyung-Sub
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.5
    • /
    • pp.544-551
    • /
    • 2008
  • QUAL2K enhanced QUAL2E and applied in real fields efficiently incorporates denitrification process, sediment-water interaction process, bottom algae and detritus. Also, the CBOD of QUAL2K is divided into two real parts, one is slow CBOD(sCBOD) and another is fast CBOD(fCBOD). The simulation results of QUAL2E and QUAL2K models in Anyang Stream were compared and analyzed in water quality constituents of DO, BOD, Org-N, NH$_3$-N, NO$_3$-N, Org-P, Dis-P and Chl-a respectively. The similar results were shown in Org-N, NH$_3$-N, Org-P and Chl-a both QUAL2K and QUAL2E models. But the different results were revealed in DO, BOD, Dis-P and NO$_3$-N by the influence of new incorporating processes. DO was shown relatively low values in the effect of bottom algae. BOD which is influenced by particulate organic matter was revealed high values. NO$_3$-N was closed to the real values by the two processes of denitrification and sediment-water interaction. To evaluate the running results of QUAL2K and QUAL2E models, a simple statistical analysis was conducted. According to the statistical analysis, QUAL2K represented less relative error and coefficient of variation than QUAL2E in almost all of constituents. It was found that QUAL2K, which simulates the water quality more realistically, can be applied to control and manage the water problems of river or river-run reservoir effectively.

Determination of Focused Control Pollutant Source by Analysis of Pollutant Delivery Characteristics in Unit Watershed Upper Paldang Lake (팔당호 상류의 단위유역별 오염물질 유출특성 분석을 통한 중점관리 오염원 선정)

  • Kim, Dong Woo;Jang, Mi Jeong;Han, Ihn Sup
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.5
    • /
    • pp.367-377
    • /
    • 2014
  • Paldang lake which is the most important water resource in Korea is classified as a stream type reservoir and water quality of Paldang lake can be significantly influenced by external pollutant source. So this study was aimed to determine focused control BOD and TP sources of each unit watershed upper Paldang lake through analysis of pollutant source distribution and pollutant runoff characteristics. Generated load, discharge load, delivery load and each load density of 11 unit watersheds upper Paldang lake were calculated using data of water quality and flow rate from pollutant sources and 74 small streams. As a result of generated load, discharge load and delivery load of BOD and TP from pollutant sources, the most BOD generated load was taken by livestock with 66% of total BOD discharge load and domestic had the most BOD discharge load, 42.7%. The ratio of delivery load of livestock and domestic was 36.4% and 34.3%, respectively. Livestock occupied high ratio of TP generated load, discharge load and delivery load with 82.5%, 44.4% and 46.7%, respectively. Gyeongan watershed which had high population density showed the highest BOD delivery load density of $14.6kg/km^2/d$ and the highest TP delivery load density with $1.23kg/km^2/d$ was analyzed in Cheongmi watershed including the biggest number of livestock. From these results, management of domestic sewer and livestock excrement was determined as a focused control pollutant source. And intensive management about domestic sewer in Gyeongan stream and livestock excrement in Cheongmi stream is required for water quality improvement of Paldang lake.

The Background and Direction of R&D Project for Advanced Technology of Wastewater Treatment and Reuse (하.폐수 고도처리 기술개발사업 추진배경과 개발방향)

  • Kim, Ji-Tae;Hwang, Hae-Young;Hong, Byung-Pyo;Byun, Hong-Sik
    • Membrane Journal
    • /
    • v.21 no.3
    • /
    • pp.277-289
    • /
    • 2011
  • Since 1980s, wastewater treatment facilities in Korea have been rapidly expanded by 90 percent as the government invested them continuously. Considering social and environmental factors such as the needs of alternative water resources for water shortages, energy saving and new energy production sources for decrease of greenhouse gases, and the demand for the improvement of the water quality in rivers and lakes, advanced technologies in wastewater treatment are essential in the 21st century. In this aspect, new conceptual technology is systematically combined with the advanced treatment technology such as the control and treatment technology of hazardous and toxic material, customized reusing skill, and energy saving/recovery technology. The new R&D project for advanced technology of wastewater treatment and reuse will focus on these advanced technologies which will improve the water quality and foster the competitiveness in world environmental markets, building a solid foundation particularly in the market of developing countries. The project will be divided up into high quality reusing of wastewater, energy self-sufficiency, and integrated management system. It will be carried out for five years, 2011~2015, as Phase I.

The Impact of Reclamation of Shiwha-District on Environment (시화지구 간척사업이 주변 환경에 미친 영향)

  • Lee, Hyoun-Young;Lee, Seung-Ho
    • Journal of the Korean Geographical Society
    • /
    • v.31 no.4
    • /
    • pp.639-647
    • /
    • 1996
  • Raclamaton of tidal flats has been practiced in Korea since the fifteenth century mainly for agiculatural porposes. The total area of reclaimed lands in 1994was estimated to be 400 k$m^2$ which corresponds to 2% of the national farm land. Recently, reclamation has been undertaken extensively, and such a huge projects as Samemankum Development will add over 401k$m^2$ by 2004. The impact of coastal reclamation on the environment is enormous. Most of them are presumably instrumental in causing local changes of coastal ecology. Reclamation is expected to be undertaken continuosly and adverse effects are expected. The authors ineended to identify the impacts of reclamation on the study area, to seek the causes of the environmental prolems of Shiwha-District Reclamation, and to analyze ite Environmental Impact Assessment to for environmentally sound sustained development.

  • PDF

A Study on the Improvement of Water Environment in Retention Pond by Seawater Flocculation and Fenton Oxidation (해수 응집과 펜턴 산화에 의한 유수지 수환경 개선에 관한 연구)

  • Kim, Jin-Han;Jun, Se-Jin;Lim, Ji-Young;Song, Yun-Min;Yoo, Kun-Woo;Jung, Jong-Tai;Park, Jung-Hwan
    • Journal of Wetlands Research
    • /
    • v.12 no.1
    • /
    • pp.75-82
    • /
    • 2010
  • This study was performed to figure out what would be effective to improve water environment in a retention pond which was located in Incheon. Chemical coagulation, seawater flocculation and Fenton treatment were carried out to improve water and sediment quality for the retention pond. Experimental results showed that pH of 11 was optimum pH for seawater flocculation and the high removal rates in terms of SS and T-P can be obtained by seawater flocculation. To eliminate the pollutants from the sediments we applied Fenton oxidation process. We compared whether direct oxidizing the sediments would be more effective than oxidizing them after elution. By Fenton oxidation only, the COD removal rate was 0.55 grams per one $H_2O_2$ gram. Whereas the removed COD grams per one $H_2O_2$ gram were 0.69 by Fenton oxidation after elution. It showed that the oxidizing after elution was about 25% more effective than the oxidizing without elution. Both treatments could improve the water quality of a retention pond from a level 6(very bad) to a level 3(normal) of Lake Water Quality Standard.

Novel two-stage hybrid paradigm combining data pre-processing approaches to predict biochemical oxygen demand concentration (생물화학적 산소요구량 농도예측을 위하여 데이터 전처리 접근법을 결합한 새로운 이단계 하이브리드 패러다임)

  • Kim, Sungwon;Seo, Youngmin;Zakhrouf, Mousaab;Malik, Anurag
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.spc1
    • /
    • pp.1037-1051
    • /
    • 2021
  • Biochemical oxygen demand (BOD) concentration, one of important water quality indicators, is treated as the measuring item for the ecological chapter in lakes and rivers. This investigation employed novel two-stage hybrid paradigm (i.e., wavelet-based gated recurrent unit, wavelet-based generalized regression neural networks, and wavelet-based random forests) to predict BOD concentration in the Dosan and Hwangji stations, South Korea. These models were assessed with the corresponding independent models (i.e., gated recurrent unit, generalized regression neural networks, and random forests). Diverse water quality and quantity indicators were implemented for developing independent and two-stage hybrid models based on several input combinations (i.e., Divisions 1-5). The addressed models were evaluated using three statistical indices including the root mean square error (RMSE), Nash-Sutcliffe efficiency (NSE), and correlation coefficient (CC). It can be found from results that the two-stage hybrid models cannot always enhance the predictive precision of independent models confidently. Results showed that the DWT-RF5 (RMSE = 0.108 mg/L) model provided more accurate prediction of BOD concentration compared to other optimal models in Dosan station, and the DWT-GRNN4 (RMSE = 0.132 mg/L) model was the best for predicting BOD concentration in Hwangji station, South Korea.

The Study of Operating Conditions by Establishing Density Currents Generator for Improving of Water Quality on Lake Water - With Focus on DO and Water Temperature - (호소수의 수질개선을 위한 DCG 설치시 운전조건에 관한 연구 - DO와 수온을 중심으로 -)

  • Lee, Young-Shin;Han, Kyung-Hee;Kim, Young-Kyu;An, Hyung-Chul;Shin, Sung-Woo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.4
    • /
    • pp.286-294
    • /
    • 2014
  • The purpose of this study is to investigate the effects of applying density current generator (hereafter referred to as DCG to large lakes on the operating conditions of DCG, de-stratification, water quality improvement and inhibition of algae occurrence. As a result of a survey conducted to derive the optimum operating parameters of DCG in a condition to minimize eco-toxicity, the following conclusions were obtained. During the survey period, a marked stratification appeared in September to October 2011 and May 2012. At this time, the average depth of water to form thermocline was found to be $5{\pm}2$ m, so the location of discharge port for the operation of DCG was determined to be about 5 m below from the surface. To minimize the adverse effects of benthos and obtain the effect of water mixture at the time of water circulation, the mixing ratio of surface water and deep water was designed to be 3:1 by means of ecotoxicological assessment on the DCG operating characteristics. To select the appropriate operating hours for DCG, DCG was operated by 12 hr, 24 hr, 36 hr and 48 hr. As its result, the formation of thermocline did not occur during the operation of 36 hr. Also, It was effected that start reoperating from 3rd day after stop 2days under the condition of operated during 36 hr with calculated power consumption. Under the above conditions, the results of DO and water temperature analysis during the operation of DCG showed that the stratification, which was distinct previously, appeared to be weak, and relatively lower levels than those before operation were found as a result of water quality analysis on COD and chlorophyll-a, which leads to the conclusion that the water body is maintained at a stable condition due to the circulation of water by the occurrence of density current resulting from the operation of DCG.

Trophic State Characteristics in Topjeong Reservoir and Their Relations among Major Quality Parameters (탑정저수지의 부영양화 특성 및 주요 변수 간의 상호관계)

  • Park, Yu-Mi;Lee, Eui-Haeng;Lee, Sang-Jae;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.42 no.3
    • /
    • pp.382-393
    • /
    • 2009
  • The objectives of this study were to characterize long-term annual and seasonal trophic state of Topjeong Reservoir using conventional variables of Trophic State Index (TSI) and to determine the empirical relations between the trophic parameters. For the analysis, we used water quality dataset of 1995$\sim$2007, which is obtained from the Ministry of Environment, Korea and the number of parameters was 9. Annual ambient mean values of TN and TP were 1.78 mg $L^{-1}$ and 0.03 mg $L^{-1}$, respectively and TN : TP ratios averaged 76, indicating that this system was nitrogen-rich hypertrophic, and was probably phosphorus-limitation for algal growth. Therefore, nitrogen varied little with seasons and years, and total phosphorus (TP) varied depending on season and year. Monsoon dilutions of TP occurred in August and monthly fluctuations of suspended solid (SS) was similar to those of chlorophyll-$\alpha$ (CHL). Annual mean values of BOD and $COD_{Mn}$ were 1.61 mg $L^{-1}$ and 4.23 mg $L^{-1}$, respectively and the interannual values were directly influenced by the intensity of annual rainfall. There were no significant differences in the trophic variables between the two sampling sites. Mean values of Trophic State Index (TSI, Carlson, 1977), based on TN, TP, CHL, and SD (Secchi depth), turned out as eutrophic state, except for the TN (hypertrophic). Regression analyses of log-transformed seasonal CHL against TP and TN showed that variation of the CHL was explained 37% by the variation of TP ($R^2$=0.37, p<0.001, r=0.616), but not by TN ($R^2$=0.03, p>0.05). Regression coefficient of $Log_{10}$CHL vs $Log_{10}SD$ was 0.330 (p<0.003, r=0.580), indicating that transparency is regulated by the organic matter in the system. Results, data suggest that one of the ways controlling the eutrophication would be a reduction of phosphorus from the watershed.

Evaluation of Future Turbidity Water and Eutrophication in Chungju Lake by Climate Change Using CE-QUAL-W2 (CE-QUAL-W2를 이용한 충주호의 기후변화에 따른 탁수 및 부영양화 영향평가)

  • Ahn, So Ra;Ha, Rim;Yoon, Sung Wan;Kim, Seong Joon
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.2
    • /
    • pp.145-159
    • /
    • 2014
  • This study is to evaluate the future climate change impact on turbidity water and eutrophication for Chungju Lake by using CE-QUAL-W2 reservoir water quality model coupled with SWAT watershed model. The SWAT was calibrated and validated using 11 years (2000~2010) daily streamflow data at three locations and monthly stream water quality data at two locations. The CE-QUAL-W2 was calibrated and validated for 2 years (2008 and 2010) water temperature, suspended solid, total nitrogen, total phosphorus, and Chl-a. For the future assessment, the SWAT results were used as boundary conditions for CE-QUAL-W2 model run. To evaluate the future water quality variation in reservoir, the climate data predicted by MM5 RCM(Regional Climate Model) of Special Report on Emissions Scenarios (SRES) A1B for three periods (2013~2040, 2041~2070 and 2071~2100) were downscaled by Artificial Neural Networks method to consider Typhoon effect. The RCM temperature and precipitation outputs and historical records were used to generate pollutants loading from the watershed. By the future temperature increase, the lake water temperature showed $0.5^{\circ}C$ increase in shallow depth while $-0.9^{\circ}C$ in deep depth. The future annual maximum sediment concentration into the lake from the watershed showed 17% increase in wet years. The future lake residence time above 10 mg/L suspended solids (SS) showed increases of 6 and 17 days in wet and dry years respectively comparing with normal year. The SS occupying rate of the lake also showed increases of 24% and 26% in both wet and dry year respectively. In summary, the future lake turbidity showed longer lasting with high concentration comparing with present behavior. Under the future lake environment by the watershed and within lake, the future maximum Chl-a concentration showed increases of 19 % in wet year and 3% in dry year respectively.