• Title/Summary/Keyword: 호소수질

Search Result 294, Processing Time 0.034 seconds

Assessment of Estuary Reservoir Water Quality According to Upstream Pollutant Management Using Watershed-Reservoir Linkage Model (유역-호소 연계모형을 이용한 상류 오염원 관리에 따른 담수호 수질영향평가)

  • Kim, Seokhyeon;Hwang, Soonho;Kim, Sinae;Lee, Hyunji;Jun, Sang Min;Kang, Moon Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.64 no.6
    • /
    • pp.1-12
    • /
    • 2022
  • Estuary reservoirs were artificial reservoir with seawalls built at the exit points of rivers. Although many water resources can be saved, it is difficult to manage due to the large influx of pollutants. To manage this, it is necessary to analyze watersheds and reservoirs through accurate modeling. Therefore, in this study, we linked the Hydrological Simulation Program-FORTRAN (HSPF), Environmental Fluid Dynamics Code (EFDC), and Water quality Analysis Simulation Program (WASP) models to simulate the hydrology and water quality of the watershed and the water level and quality of estuary lakes. As a result of applying the linked model in stream, R2 0.7 or more was satisfied for the watershed runoff except for one point. In addition, the water quality satisfies all within 15% of PBIAS. In reservoir, R2 0.72 was satisfied for water level and the water quality was within 15% of T-N and T-P. Through the modeling system, We applied upstream pollutant management scenarios to analyze changes in water quality in estuary reservoirs. Three pollution source management were applied as scenarios, the improvement of effluent water quality from the sewage treatment plant and the livestock waste treatment plant was effective in improving the quality of the reservoir water, while the artificial wetland had little effect. Water quality improvement was confirmed as a measure against upstream pollutants, but it was insufficient to achieve agricultural water quality, so additional reservoir management is required.

Numerical Study on the Effect of Hyporheic Flow on Solute Transport in Surface Water (혼합대 흐름이 지표수 용질거동에 미치는 영향에 대한 수치해석 연구)

  • Jun Song Kim;Sung Hyun Jung;Donghae Baek
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.127-127
    • /
    • 2023
  • 지표수와 하상 경계층에서 발생하는 흐름 교환은 하천, 호소, 연안, 해안 등 자연계에 존재하는 수환경시스템에서 일반적으로 나타나는 수리학적 특성으로서, 흐름 교환이 발생하는 경계층 아래 하상층 영역을 혼합대(hyporheic zone)라 부른다. 수질오염사고 등에 의해 외부의 오염물질이 하천 내 유입될 경우, 혼합대 흐름에 의해 하상층으로 침투되고 지표수 대비 유속이 느린 하상 내 공극 흐름에 의해 거동함에 따라 이들의 하천 내 체류시간이 증가하게 된다. 따라서, 본 연구에서는 지표수와 하상 흐름을 연계한 수치해석 방법을 적용하여 혼합대가 지표수 내 용질 체류시간에 미치는 영향을 분석하였다. 먼저 연직 2차원 Reynolds 평균 Navier-Stokes(RANS) 방정식과 Darcy 방정식을 연계하여 지표수와 하상 내 흐름을 해석하였다. 지표수 영역은 RANS 방정식을 이용하여 모의하였고, 지표수 흐름해석에서 얻어진 하상의 압력장을 경계조건으로 하여 Darcy 방정식과 함께 하상 내 흐름을 모의하였다. 여기서 하상의 형태는 자연계 하천에서 일반적으로 관찰되는 사련하상(Ripple bed)으로 모사하였다. 이후, 지표수-하상 연계모의를 통해 얻어진 흐름 결과를 바탕으로 지표수-하상 경계층에서 용질거동을 모의하였다. 흐름 모의결과를 과거 실험자료와 비교한 결과, 지표수 영역 내연직흐름 분포를 정확하게 재현하였고, 동시에 혼합대 흐름 구조에 큰 영향을 미치는 지표수-하상 경계층 압력 분포 역시 관측값과 유사하게 나타났다. 용질거동 해석을 통해 얻어진 용질의 체류시간을 분석한 결과, 혼합대 흐름이 고려된 경우(투수성 하상)와 고려되지 않은 경우(불투수성 하상)를 비교했을 때 전자에서 체류시간 분포의 감수곡선이 길어지고 첨두농도가 감소하는 것으로 나타났다. 아울러, 지표수 영역의 유입부 경계의 평균 유속이 증가함에 따라 최대 체류시간이 감소하는 것으로 나타났는데, 이는 지표수-하상 경계층에서의 압력 경사가 커져 혼합대 내 유속이 증가함에 기인하는 것으로 분석되었다.

  • PDF

Study on the Selecting of Suitable Sites for Integrated Riparian Eco-belts Connecting Dam Floodplains and Riparian Zone - Case Study of Daecheong Reservoir in Geum-river Basin - (댐 홍수터와 수변구역을 연계한 통합형 수변생태벨트 적지 선정방안 연구 - 금강 수계 대청호 사례 연구 -)

  • Bahn, Gwonsoo;Cho, Myeonghyeon;Kang, Jeonkyeong;Kim, Leehyung
    • Journal of Wetlands Research
    • /
    • v.23 no.4
    • /
    • pp.327-341
    • /
    • 2021
  • The riparian eco-belt is an efficient technique that can reduce non-point pollution sources in the basin and improve ecological connectivity and health. In Korea, a legal system for the construction and management of riparian eco-belts is in operation. However, it is currently excluded that rivers and floodplains in dam reservoir that are advantageous for buffer functions such as control of non-point pollutants and ecological habitats. Accordingly, this study presented and analyzed a plan to select a site for an integrated riparian ecol-belt that comprehensively evaluates the water quality and ecosystem characteristics of each dam floodplain and riparian zone for the Daecheong Dam basin in Geum River watershed. First, the Daecheong Dam basin was divided into 138 sub-basin with GIS, and the riparian zone adjacent to the dam floodplain was analyzed. Sixteen evaluation factors related to the ecosystem and water quality impact that affect the selection of integrated riparian eco-belt were decided, and weights for the importance of each factor were set through AHP analysis. The priority of site suitability was derived by conducting an integrated evaluation by applying weights to sub-basin by floodplains and riparian zone factors. In order to determine whether the sites derived through GIS site analysis are sutiable for actual implementation, five sites were inspected according to three factors: land use, pollution sources, and ecological connectivity. As a result, it was confirmed that all sites were appropriate to apply integrated riparian ecol-belt. It is judged that the riparian eco-belt site analysis technique proposed through this study can be applied as a useful tool when establishing an integrated riparian zone management policy in the future. However, it might be necessary to experiment various evaluation factors and weights for each item according to the characteristics and issues of each dam. Additional research need to be conducted on elaborated conservation and restoration strategies considering the Green-Blue Network aspect, evaluation of ecosystem services, and interconnection between related laws and policy and its improvements.

Effects of Cyanobacterial Bloom on Zooplankton Community Dynamics in Several Eutrophic Lakes (부영양호수에서 남조류 bloom이 동물플랑크톤 군집변화에 미치는 영향)

  • Kim, Bom-Chul;Choi, Eun-Mi;Hwang, Soon-Jin;Kim, Ho-Sub
    • Korean Journal of Ecology and Environment
    • /
    • v.33 no.4 s.92
    • /
    • pp.366-373
    • /
    • 2000
  • Toxin production and low digestibility of cyanobacteria are known to cause low exploitability of cyanobacteria by zooplankton. In this study, we compared relative tolerance and compatibility of zooplankton taxa in eight eutrophic lakes, exposed to frequent cyanobacterial blooms, uring the summer season of 1999. Microcystis, Anabaena, Oscillatoria and Phormidium were common cyanobacteria in all lakes. with relatively lower $NO_3-N$ concentration (<0.2 mgN/l) and TN/TP ratio (<20), compared with other lakes where colonial cyanobacteria dominated. Rotifers were dominant zooplankton in most lakes, and among them, Keratella, Polyarthra and Hexathra were common. The laboratory feeding experiment showed that relative copepods that greatly decreased (90%) after 4 day when cyanobacteria were used as the food source of zooplankton, while rotifers gradually increased with the change of dominant taxa from Keratella through Pompholyx to Monostyla. These results suggest that rotifers may be capable of coexisting with cyanobacteria by exploiting them for the food source.

  • PDF

Comparison of Filtering Abilities of Korean Freshwater Bivalves and Their Filtering Effects on Water Quality (국내 담수산 조개의 섭식활동이 호수 수질에 미치는 영향)

  • Kim, Ho-Sub;Choi, Kwang-Hyun;Park, Jung-Hwan;Shin, Jae-Ki;Hwang, Soon-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.35 no.2 s.98
    • /
    • pp.92-102
    • /
    • 2002
  • This study was conducted to compare filtering abilities of three species of freshwater mussels (Cobicula fluminea, Corbicula leana and Unio douglasiae) and to evaluate their filter feeding effects on water quality change in experimental enclosure systems. Mussel feeding in both laboratory and enclosure resulted in decrease of particulate material, such as chlorophyll, total P, SS. In the treatment with 600 individuals of mussels, chllorophyll concentration and net primary productivity decreased from $87.3{\pm}4.5\;{\mu}g/L$ and $106.3{\pm}8.8\;{\mu}gC\;L^{-1}\;hr^{-1}$ to nearly the same level as the mussel-free enclosure ($25.0{\pm}0.5\;{\mu}g/L$ and $15.6{\pm}13.3\;{\mu}gC\;L^{-1}\;hr^{-1}$, respectively)(P< 0.05, n = 6, ANOVA). In concert with the decrease of chlorophyll concentration, not only was the transparency enhanced from 0.48 m to 1.2m but also the suspended solids and total phosphorus decreased from $22.0{\pm}1.0\;mg/L$ to $7.5{\pm}0.5\;mg/L$ and $133{\pm}0.8\;{\mu}g/L$ to $70{\pm}0.0\;{\mu}g/L$, respectively (P<0.001, $r^2$>0.71, n = 11). Although slight decrease of SRP concentration and the increase of inorganic nitrogen ($NH_3-N$ and $NO_2-N$) were observed in the mussel addition enclosure, there was no statistical difference between two enclosures. Based on the filtering rate on phytoplankton and nutrient release rate in forms of feces and pseudofeces, Corbicula leana appeared to be the most efficient filter-feeder among three mussel species. These results inidicate that Cobicula play an important role in controlling particulate sestons and thus it could be applied as a biocontroler for the water quality management in lakes and reservoirs with algal blooms.

Monitoring of Nitrogen and Phosphorus from Submerged Plants in Boknae Reservoir around Juam Lake (주암호 복내 저수구역내 침수 자생식물의 질소 및 인 모니터링)

  • Kang, Se-Won;Seo, Dong-Cheol;Lee, Sang-Gyu;Seo, Young-Jin;Park, Ju-Wang;Choi, Ik-Won;Park, Jong-Hwan;Lim, Byung-Jin;Heo, Jong-Soo;Cho, Ju-Sik
    • Korean Journal of Environmental Agriculture
    • /
    • v.32 no.1
    • /
    • pp.9-16
    • /
    • 2013
  • BACKGROUND: Eutrophication occurs occasionally in reservoirs around lake in summer and early autumn. Lakeside macrophyte which is one of internal pollutants effects on water quality when it is submerged during rainy season. To improve water quality of water supply source in Boknae reservoir around Juam lake, characteristics of nutrient(N, P) uptake and release by submerged plants were investigated. METHODS AND RESULTS: In order to establish the management plan of submerged plants in Boknae reservoir around Juam lake, water level, rainfall, flooding and non-flooding areas, biomass of dominant plants, contents of nitrogen and phosphorus were investigated during 7 months(August, 2010 through February, 2011). Dominant plants were Miscanthus sacchariflorus(MISSA) and Carex dimorpholepis(CRXDM) in Boknae reservoir. Total plant area of Boknae reservoir in August, 2010 was 987,872 $m^2$. In Boknae reservoir, flooding occurred from August until February caused by rainfall during rainy season. The total amounts of nitrogen and phosphorus uptakes by MISSA were 247 and 22 kg/total reservoir area, respectively. By CRXDM, the total amounts of nitrogen and phosphorus uptakes were 11,340 and 1,231 kg/total reservoir area, respectively. The total amounts of nitrogen and phosphorus residues by MISSA were 34 and 11 kg/total reservoir area, respectively. By CRXDM, the total amounts of nitrogen and phosphorus residues were 491 and 68 kg/total reservoir area, respectively. CONCLUSION(S): Total amounts of nitrogen and phosphorus releases in Boknae reservoir were 12,212 and 1,324 kg/total reservoir area, respectively. The results demonstrate that total nitrogen and total phosphorus in water were strongly influenced by submerged plants. Therefore, management plan for submerged plants during rainy season will be needed to improve water quality of water supply source in Boknae reservoir around Juam lake.

Effects of Environmental Factors on the Bacterial Community in Eutrophic Masan Reservoir (이화학적 수질인자가 부영양화된 마산저수지의 세균분포에 미치는 영향)

  • 남귀숙;손형식;차미선;조순자;이광식;이상준
    • Korean Journal of Microbiology
    • /
    • v.39 no.2
    • /
    • pp.95-101
    • /
    • 2003
  • The total bacterial numbers, Eubacterial community structures and environmental factors which affect bacterial community were estimated monthly using DAPI and fluorescent in situ hybridization monthly, from June to November 2000 to evaluate the correlation between the bacterial community and environmental factors in eutrophic agricultural Masan reservoir in Asan. Average water temperatures varied from 12.3 to $27.5^{\circ}C$, pH 7.5 to 9.0, DO 7. I~12.8 mg/L, COD 6.4~13.0 mg/L, chlorophyll a 30.5~99.0 mg/㎥, SS 7.S~25.7 mg/L, TN 1.748~3.543 mg/L., and TP 0.104~0.581 mg/L, respectively. Total bacterial numbers showed high ranges from 0.4 to 9.6$\times$ $10^{6}$ cells/ml, and these indicated the mesotrophic or eutrophic state. The ratio of Eubacteria to total bacteria was 67.6-88.0%, which was higher than that in other reservoir. The relationships of total bacteria and Eubacteria community were more significant with organic nitrogen (Org-N), and organic phosphorus (Org-P) than with water temperature. Proteobacteria groups showed strongly significant relationships with Org-P and Org-N and significant relationships with water temperature, conductivity, COD, and inorganic nitrogen. C-F group was the most significant with Org-N, and HGC group with water temperature. However, relationships of Chl-a, pH, DO and SS showed no significance with any bacterial community. These results were different from other studies, because of the specific characteristics of Masan reservoir such as old, shallow and eutrophic states. The seasonal variation of bacterial community in Masan reservoir does not seem to depend on phytoplankton dynamics but on storm event and organic materials from watershed and the sediment of reservoir.

Reservoir Trophic State and Empirical Model Analysis, Based on Nutrients, Transparency, and Chlorophyll-${\alpha}$ Along with Their Relations Among the Parameters (영양염류, 투명도 및 엽록소를 이용한 인공호 영양상태, 경험적 모델 분석 및 변수들 간의 상호관계)

  • An, Kwang-Guk;Kim, Jae-Kyeng;Lee, Sang-Jae
    • Korean Journal of Environmental Biology
    • /
    • v.26 no.3
    • /
    • pp.252-263
    • /
    • 2008
  • The purpose of this study was to determine trophic state, based on nutrients (TN, TP), transparency (SD), and chlorophyll-${\alpha}$ (Chl) and identify their empirical relations of TN-Chl, TP-Chl and Chl-SD depending on the dataset used along with dynamics of conductivity and suspended solids. Analysis of trophic states showed that more than half of 36 reservoirs were judged as eutrophic-hypertrophic conditions depending on the trophic variables. Seasonal values of TP varied by nearly 500% and showed greater in August than any other months. In contrast, TN varied within less than 90% and all monthly mean values of TN were never fall less than 1.2 mg L$^{-1}$ indicating low seasonal variations and high ambient concentrations (eutrophic-hypertrophic state). Analysis of empirical relations in the trophic variables showed that transparency had greater functional relations with Chl (R$^2$=0.31, p<0.001) than TP (R$^2$=0.15, p<0.001) and TN (R$^2$=0.20, p<0.001). Ratios of TN : TP in the ambient water indicated that most reservoirs showed a potential phosphorous limitation on the algal growth. Thus, algal biomass, based on Chl values, was more regulated by phosphorous than nitrogen. Analysis of linear regression model, based on log-transformed annual mean values, showed that only 30% in the variation of Chl was explained by TP (R$^2$=0.295, p=0.001, n=36) and 15% by TN (R$^2$=0.151, p=0.019, n=36). However, linear regression model, based on individual system, showed that Chl-TP model had strong positive relations (R$^2$=0.62, p=0.002, n=12), whereas the model had no any relations (p=0.892, n=12). Overall, our data suggested that averaging effect in the empirical model developments may influence the significance in the statistical analysis.

The PC concrete Rainwater Storage Facility development for a prevention of disaster and a water resources re-application (방재 및 수자원 재활용을 위한 PC콘크리트 빗물저류조의 개발)

  • Chang, Young-Cheol;Cho, Cheong-Hwi;Kim, Ok-Soo;Oh, Se-Eun;Lee, Jun-Gu
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.879-883
    • /
    • 2005
  • 우리나라는 하천유역의 도시화 추세 속에 불투수층의 증가로 빗물의 일시 유출로 인한 홍수발생으로 많은 인명과 재산피해가 발생하고 있어 방재적 차원에서의 수자원관리가 시급한 실정이다. 또한, 초기 빗물과 합류식 하수도의 월류수에 의한 하천, 호소, 및 습지의 수질오염문제도 많이 발생하고 있다. 이러한 문제를 해결하기 위하여 콘크리트로 제작된 PC 지하식 빗물저류시설로서 상부의 공간은 공원, 운동장, 주차장 등 다양하게 이용하면서 방재와 치수를 가능케 할 수 있다. 또한, PC 콘크리트 빗물저류조는 현장 타설이 아닌 PC콘크리트 블록을 현장에서 조립하여 시공기간이 대폭적으로 단축되고, 작업환경 및 주변환경을 개선시킬 수 있다. 또한, 지하수의 보전, 회복을 위한 빗물저류 침투 시설 역할도 수행하여 비상용수를 확보하고 여름철 홍수 시 빗물을 가두어 재해를 방지하는 등의 다목적 시설로 활용된다. 지하 매립형 빗물저류조는 기존의 암거설계기준을 참조하여 일본의 내진설계 기준을 반영하였으며, 고강도 콘크리트를 사용하여 강도 또한 뛰어나다. 그리고 시공이 간편하고 공기의 단축에 탁월한 효과를 나타내며, 빗물저류조 설치는 다음과 같은 특징이 있다. 1. 지하저류형 빗물저류조 시설로 설계되어 토지의 효과적인 이용이 기대된다. 2. 공사기간이 짧아 경제적이다. 3. 안정된 구조체이다. 4. 부지의 형태에 맞춘 시공이 가능하다. 5. 소규모에서 대규모의 유수지까지 광범위하게 대응이 가능하다. 6. 방재역할 수행 및 빗물이용의 역할을 담당할 수 있다. 7. 불투수층이 증가하고 있는 도시지역에서 적극 활용가능하다.로 판단된다.한 예비방류의 시행과 강우종료 후에도 이수용량에는 손실이 없는 저수지의 관리방안의 지침이 되는데 효율적이라 판단되었다. 방법을 개발하여 개선시킬 필요성이 있다.>$4.3\%$로 가장 근접한 결과를 나타내었으며, 총 유출량에서도 각각 $7.8\%,\;13.2\%$의 오차율을 가지는 것으로 분석되어 타 모형에 비해 실유량과의 차가 가장 적은 것으로 모의되었다. 향후 도시유출을 모의하는 데 가장 근사한 유출량을 산정할 수 있는 근거가 될 것이며, 도시재해 저감대책을 수립하는데 기여할 수 있을 것이라 판단된다.로 판단되는 대안들을 제시하는 예비타당성(Prefeasibility) 계획을 수립하였다. 이렇게 제시된 계획은 향후 과학적인 분석(세부평가방법)을 통해 대안을 평가하고 구체적인 타당성(feasibility) 계획을 수립하는데 토대가 될 것이다.{0.11R(mm)}(r^2=0.69)$로 나타났다. 이는 토양의 투수특성에 따라 강우량 증가에 비례하여 점증하는 침투수와 구분되는 현상이었다. 경사와 토양이 같은 조건에서 나지의 경우 역시 $Ro_{B10}(mm)=20.3e^{0.08R(mm)(r^2=0.84)$로 지수적으로 증가하는 경향을 나타내었다. 유거수량은 토성별로 양토를 1.0으로 기준할 때 사양토가 0.86으로 가장 작았고, 식양토 1.09, 식토 1.15로 평가되어 침투수에 비해 토성별 차이가 크게 나타났다. 이는 토성이 세립질일 수록 유거수의 저항이 작기 때문으로 생각된다. 경사에 따라서는 경사도가 증가할수록 증가하였으며

  • PDF

Evaluation on the nutrient concentration changes along the flow path of a free surface flow constructed wetland in agricultural area (농업지역에 조성된 자유수면형 인공습지의 유로에 따른 영양염류의 변화 평가)

  • Mercado, Jean Margaret R.;Maniquiz-Redillas, Marla C.;Kim, Lee-Hyung
    • Journal of Wetlands Research
    • /
    • v.15 no.2
    • /
    • pp.215-222
    • /
    • 2013
  • In this study, the nutrient concentration changes along the hydrologic flow path of a free water surface flow constructed wetland (CW) treating agricultural stream runoff was investigated. Dry sampling was performed from April 2009 to November 2011 at five locations representing each treatment units of the CW. Grab water samples were analyzed for nitrogen forms such as total nitrogen (TN), total Kjeldahl nitrogen, nitrate, and ammonium; and phosphorus forms including total phosphorus (TP) and phosphate. Findings revealed that the physical properties such as temperature, dissolved oxygen and pH affected the TP retention in the CW. High nutrient reduction was observed after passing the first sedimentation zone indicating the importance of settling process in the retention of nutrients. However, it was until the 85% of the length of the CW where nutrient retention was greatest indicating the deposition of nutrients at the alternating shallow and deep marshes. TN and TP concentration seemed to increase at the final sedimentation zone (FSZ) suggesting a possible nutrient source in this segment of the CW. It was therefore recommended to reduce or possibly remove the FSZ in the CW for an optimum performance, smaller spatial allocation and lesser construction expenses for similar systems.