• 제목/요약/키워드: 호모모픽 필터링

검색결과 3건 처리시간 0.018초

자연 영상에서의 정확한 문자 검출에 관한 연구 (A Study on Localization of Text in Natural Scene Images)

  • 최미영;김계영;최형일
    • 한국컴퓨터정보학회논문지
    • /
    • 제13권5호
    • /
    • pp.77-84
    • /
    • 2008
  • 본 논문에서는 자연영상에 존재하는 문자들을 효율적으로 검출하기 위한 새로운 접근 방법을 제안한다. 빛 또는 조명의 영향에 의해 획득된 영상 내에 존재하는 반사성분은 문자 또는 관심객체들의 경계가 모호해 지거나 관심객체와 배경이 서로 혼합되었을 경우, 문자추출 및 인식을 함에 있어서 오류를 포함시킬 수 있다. 따라서 영상 내에 존재하는 반사성분을 제거하기 위해 먼저, 영상으로부터 Red컬러 성분에 해당하는 히스토그램에서 두개의 피크 점을 검출한다. 검출된 두 개의 피크 점들 간의 분포를 사용하여 노말 또는 편광 영상에 해당하는지를 판별한다. 노말 영상의 경우 부가적인 처리를 거치지 않고 문자영역을 검출하며 편광 영상인 경우 조명성분을 제거하기 위해 호모모픽 필터링 방법을 적용하여 반사성분에 해당하는 영역을 제거한다. 그리고 문자영역을 검출하기 위해 색 병합과 세일런스 맵을 이용하여 각각의 문자 후보영역을 결정한다. 마지막으로 두 후보영역을 이용하여 최종 문자영역을 검출한다.

  • PDF

Study on OCR Enhancement of Homomorphic Filtering with Adaptive Gamma Value

  • Heeyeon Jo;Jeongwoo Lee;Hongrae Lee
    • 한국컴퓨터정보학회논문지
    • /
    • 제29권2호
    • /
    • pp.101-108
    • /
    • 2024
  • AI-OCR은 광학 문자 인식(OCR) 기술과 Artificial intelligence(AI)의 결합으로 사람의 인식이 필요하던 OCR의 단점을 보완하는 기술 향상을 이뤄내고 있다. AI-OCR의 성능을 높이기 위해서는 다양한 학습데이터의 훈련이 필요하다. 하지만 이미지 색상이 비슷한 밝기를 가진 경우에는 인식률이 떨어지기 때문에, Homomorphic filtering(HF)을 이용한 전처리 과정으로 색상 차이를 분명하게 하여 텍스트 인식률을 높이게 된다. HF은 감마값을 이용해 이미지의 고주파와 저주파를 각각 조절한다는 점에서 텍스트 추출에 적합하지만 감마값의 조절이 수동적으로 이뤄지는 단점이 존재한다. 본 연구는 시험적 과정을 거쳐 이미지의 대비, 밝기 및 엔트로피를 근거하는 감마의 임계값 범위를 제안한다. 제안된 감마값 범위를 적용한 HF의 실험 결과는 효율적인 AI-OCR의 높은 등장 가능성을 시사한다.

컬러 영상의 조명성분 분석을 통한 문자인식 성능 향상 (Improved Text Recognition using Analysis of Illumination Component in Color Images)

  • 치미영;김계영;최형일
    • 한국컴퓨터정보학회논문지
    • /
    • 제12권3호
    • /
    • pp.131-136
    • /
    • 2007
  • 본 논문에서는 컬러영상에 존재하는 문자들을 효율적으로 추출하기 위한 새로운 접근 방법을 제안한다. 빛 또는 조명성분의 영향에 의해 획득된 영상 내에 존재하는 반사성분은 문자 또는 관심객체들의 경계가 모호해 지거나 관심객체와 배경이 서로 혼합 되었을 경우, 문자추출 및 인식을 함에 있어서 오류를 포함시킬 수 있다. 따라서 영상 내에 존재하는 반사성분을 제거하기 위해 먼저. 컬러영상으로부터 Red컬러 성분에 해당하는 히스토그램에서 두개의 pick점을 검출한다. 이후 검출된 두 개의 pick점들 간의 분포를 사용하여 노말 또는 편광 영상에 해당하는지를 판별한다. 노말 영상의 경우 부가적인 처리를 거치지 않고 문자에 해당하는 영역을 검출하며, 편광 영상에 해당하는 경우 반사성분을 제거하기 위해 호모모픽필터링 방법을 적용하여 반사성분에 해당하는 영역을 제거한다. 이후 문자영역을 검출하기 위해 최적전역임계화방식을 적용하여 전경과 배경을 분리하였으며 문자영역 추출 및 인식의 성능을 향상시켰다. 널리 사용되고 있는 문자 인식기를 사용하여 제안한 방식 적용 전과 후의 인식결과를 비교하였다. 편광영상에서 제안된 방법 적용 후, 문자인식을 한 경우 인식률이 향상되었다.

  • PDF