• Title/Summary/Keyword: 호기조건

Search Result 298, Processing Time 0.032 seconds

HEV Performance Analysis Using Inverter Thermal Model (인버터 열모델을 이용한 하이브리드 차량 성능 분석)

  • Nam, Dong-Jin;Han, Dae-Woong;Kang, Gu-Bae;Min, Byung-Soon;Kim, Ho-Gi
    • Proceedings of the KIPE Conference
    • /
    • 2009.11a
    • /
    • pp.222-224
    • /
    • 2009
  • 3상 인버터의 PWM 구동시 인버터 파워모듈의 IGBT와 Diode에서는 도통 손실 및 스위칭 손실이 발생하며 이러한 손실은 소자의 정션 온도를 증가시킨다. 하이브리드 차량(HEV)의 경우 다양한 주행 조건에서 IGBT와 Diode가 제한 온도를 초과하지 않도록 해야한다. 본 연구에서는 순시 전압 및 전류에 대한 3상PWM 인버터의 손실을 계산하고 열모델을 통해 소자의 온도를 파악함으로써 하이브리드 차량의 성능 예측에 활용하였다. 열모델은 파워모듈 각 상의 IGBT와 Diode 사이의 상호 열전달을 고려하였으며 시험 결과와 시뮬레이션 결과 비교를 통해 열모델의 타당성을 살펴보았다. 제안된 모델을 통해 다양한 주행 조건에서 하이브리드 차량의 성능 분석을 실시하였다.

  • PDF

Evaluation of the Reducing Efficiency of Vertical and Horizontal Wetland Using Intermittent Flow System (간헐식 흐름방식을 활용한 수직·수평 습지의 정화효율 평가)

  • Joo, Kwang Jin;Lee, Dong Min;Kim, Ki Jung;Cho, Yong Chul;Jang, Gwang Hyeon;Choi, I Song;Oh, Jong Min
    • Ecology and Resilient Infrastructure
    • /
    • v.4 no.3
    • /
    • pp.142-148
    • /
    • 2017
  • Nitrogen and phosphorus are key factors in causing eutrophication of water body. In this study, ceramics media was selected to increase the removal efficiency of nitrogen and phosphorus. We designed vertical, horizontal flow constructed wetlands to create aerobic and anaerobic flow conditions by using the media, then proceeded to performance evaluations after acrylic reactors were produced. In the case of vertical and horizontal flow constructed wetlands, we measured oxygen concentrations to evaluate aerobic and anaerobic conditions. we got the result of 2.7 mg/L in the aerobic condition, N.D in the anaerobic condition respectively, which suited our purpose. The result of the combined vertical and horizontal flow condition showed that the removal efficiency of SS was 94%, 91%, 61% at 140 min, 80 min, 60 min of running times, respectively, and the removal efficiency of T-P was 84%, 71%, 63% during each running time. In case of T-N, the removal efficiency was 63%, 49%, 42% during each running time. We found that the reactor exerted better removal efficiency when in the short time compared to 12 - 24 hr residence time of existing wetlands. In this study, we conducted experiments to explore functional effects after applying combined vertical and horizontal flow methods in the field. Further study will be carried out to identify its mechanism and administrative perspective.

The properties of algal degradation and gas emission by thermophilic oxic process (고온호기발효장치를 이용한 조류 분해 및 가스 발생특성)

  • Kang, Changmin
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.7 no.2
    • /
    • pp.57-64
    • /
    • 1999
  • The purpose of this study is to establish effective conditions for controlling $CH_4$, $N_2O$ emission from organic Waste / wastewater treatment processes. Continuous and batch experiments were conducted to treat the micro algae from polluted and eutrophicated lakes through the thermophilic oxic process. The microalgae used were mainly Microcystis sp.(collected from eutrophic lake) and Chlorella sp. (cultured in laboratory) Wasted cooking oil was added by aid-heating source. Physico-chemical components of sludges and microalgae were analyzed. In batch experiments, air supply was changed from 50ml/min to 150ml/min. The temperature. water content and drained water were affected by the air flow rate at initial stage. However, there was almost no influence of air flow rate on them in middle and last stages. At air flow rate of 100ml/min, the degradation rate of organic material was higher than that at other air flow rates. $CO_2$ concentration in exhaust was proportional to the strength of aeration, especially at initial stage when degradation was active. $CH_4$ with low concentration was detected only at starting stage when air diffusion was not enough. $N_2O$ production was not affected by variation of air supply. In continuous experiments no matter what the dewatering methods (with PAC and without PAC) and media (wood chip and reed chip) were changed, $N_2O$ was almost not affected by variation of injected air. Result showed that the reed chips using for lake purification could be used as media for thermophilic oxic process in lake and marshes area. $CO_2$ concentration was not so much affected by the change of dewatering methods and media types. $CH_4$ was not detected in the experimental period. So it can be shown that the thermophilic oxic process had been well operated in wide handling conditions regardless of media and dewatering methods.

  • PDF

Application of Dissolved Air Flotation Technique to Improve Eutrophic Reservoir Water Quality (가압부상법을 이용한 부영양저수지의 수질개선)

  • Kim, Ho-Sub;Jung, Dong-Il;Lee, Il-Kuk;Hwang, Soon-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.38 no.3 s.113
    • /
    • pp.372-381
    • /
    • 2005
  • This study was conducted to test the efficiency of water quality improvement using the dissolved air flotation (DAF) technique in a shallow eutrophic reservoir. The application of DAF was followed by the addition of a chemical coagulant (poly aluminum chloride; PAC). The experiment was conducted in the mesocosm scale (wide ${\times}$ length ${\times}$ depth: 6 m ${\times}$ 6 m ${\times}$ 3 m). Suspended solids (SS) and volatile SS (VSS) concentration decreased by 54 ${\sim}$ 71% and 57 ${\sim}$ 79% of the initial concentrations, respectively. Total phosphorus and Chl- a concentration also decreased by 74 ${\sim}$ 92% and 54 ${\sim}$ 98%, respectively. BOD decreased by>86% while COD decrease ranged 29 ${\sim}$ 63%. Dissolved inorganic P (DIP) and dissolved total P (DTP) concentration decreased by 34 ${\sim}$ 88% and 62 ${\sim}$ 88%, respectively. After DAF application further onto the sediment, DIP-release rates from the sediment decreased by 17% (0.82 ${\to}$ 0.68 mg $m^{-2}$$day^{-1}$ in the oxic condition and 23% (2.27 ${\to}$ 1.76 mg $m^{-2}$$day^{-1}$) in the anoxic condition, compared to the release rate from the untreated sediment. DTP-release rate from both the oxic and anoxic sediments also decreased by 33% (5.62 ${\to}$ 3.78 mg $m^{-2}$$day^{-1}$) and 20% (6.23 ${\to}$ 4.99 mg $m^{-2}$$day^{-1}$), respectively. These results suggest that the DAF application both to the water column and onto the sediment be effective to improve water quality by removing particulate matters in the water column as well as reducing P-release from the sediment.

OPTICAL PROPERTY AND ALIGNMENT OF KAO WIDE FIELD TELESCOPE (NEOPAT-3) (광시야 망원경 3호기 (NEOPAT-3)의 광학계 특성 및 조정)

  • Yuk, In-Soo;Kyeong, Jae-Mann;Yoon, Joh-Na;Yoon, Jae-Hyuck;Yim, Hong-Suh;Moon, Hong-Kyu;Han, Won-Yong;Byun, Yon-Ik;Kang, Yong-Woo;Yu, Sung-Yeol
    • Journal of Astronomy and Space Sciences
    • /
    • v.21 no.4
    • /
    • pp.417-428
    • /
    • 2004
  • We have investigated the optical property of the KAO(Korea Astronomy Observatory) wide field telescope (named NEOPAT-3; Near Earth Object and Satellite Patrol-3) and aligned optical system. The NEOPAT-3 is restricted to V,R,I-filters because of the refractive property of the correcting lens system. Because of the fast focal ratio, the optical performance of the NEOPAT-3 is very sensitive to its alignment factors of the optical system. To make the spot radius smaller than $8{\mu}m$ in rms over 2degree${\times}2$degree field, the optical system must satisfy the following conditions: 1) The tilt error between detector plane and focal plane should be less than 0.05degree. 2) The decenter error between the primary mirror and the correcting lens system should be less than 1mm. 3) The distance error between the primary mirror and the correcting lens system should be less than 2.3mm. In order to align the optical system accurately, we measured the aberrations of the telescope quantitatively by means of curvature sensing technique. NEOPAT-3 is installed temporary on the roof of the TRAO(Taeduk Radio Astronomy Observatory) main building to normalize system performance and to develop automatic observation.

The plan of depreciation vortex developing a Pump suction Pipes through Sump model test (수리모형실험을 통한 펌프 흡입배관부 보텍스 현상 저감방안)

  • Ahn, IS;Kim, SH;Kim, KY;Roh, HW;Lee, YH
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.193-198
    • /
    • 2004
  • In general, the function of intake structure, whether it be a open channel, a fully wetted tunnel, a sump or a tank is to supply an evenly distributed flow to a pump station. An even distribution of flow, characterized by strong local flow, can result in formation of surface or submerged vortices, and with certain low values of submergence, my introduce air into pun, causing a reduction of capacity and efficiency, an increase in vibration and additional noise. This study investigated experimentally the formation of the vortex to understand the mechanism of vortex formation and to prevent the formation of vortex in the sump model using by the model test and PIV tool. Sump model was manufactured to 1/8 scale with the drawing of W intake pumping station. from the results of model test and PIV, the vortex were occurred the in the whole section. Thus, sump model tests with the anti-vortex device might be considered to prevent the formation of vortex in the sump model.

  • PDF

Study on the Steam Line Break Accident for Kori Unit-1 (고리 1호기에 대한 증기배관 파열사고 연구)

  • Tae Woon Kim;Jung In Choi;Un Chul Lee;Ki In Han
    • Nuclear Engineering and Technology
    • /
    • v.14 no.4
    • /
    • pp.186-195
    • /
    • 1982
  • The steam line break accident for Kori Unit 1 is analyzed by a code SYSRAN which calculates nuclear power and heat flux using the point kinetics equation and the lumped-parameter model and calculates system transient using the mass and energy balance equation with the assumption of uniform reactor coolant system pressure. The 1.4 f $t^2$ steam line break accident is analyzed at EOL (End of Life), hot shutdown condition in which case the accident would be most severe. The steam discharge rate is assumed to follow the Moody critical flow model. The results reveal the peak heat flux of 38% of nominal full power value at 60 second after the accident initiates, which is higher than the FSAR result of 26%. Trends for the transient are in good agreement with FSAR results. A sensitivity study shows that this accident is most sensitive to the moderator density coefficient and the lower plenum mixing factor. The DNBR calculation under the assumption of $F_{{\Delta}H}$=3.66, which is used in the FSAR with all the control and the shutdown assemblies inserted except one B bank assembly and of Fz=1.55 shows that minimum DNBR reaches 1.62 at 60 second, indicating that the fuel failure is not anticipated to occur. The point kinetics equation, the lumped-parameter model and the system transient model which uses the mass and energy balance equation are verified to be effective to follow the system transient phenomena of the nuclear power plants.lear power plants.

  • PDF

The Study on the Non-Point Pollutants Reduction Using Friendly Bank Protection Anaerobic/Aerobic Contact Filtration Zone (혐기/호기 접촉여과대를 이용한 자연형 하천호안공법의 비점오염 저감 특성 연구)

  • Chang, HyungJoon;Kim, SungDuk
    • Journal of Korean Society of Disaster and Security
    • /
    • v.12 no.1
    • /
    • pp.23-34
    • /
    • 2019
  • It is an urgent issue to manage and reduce non-point pollution sources for improving the water quality of stream and lakes in rural areas. In this study, in order to reduce non-point pollution sources in rural area, Gabion mattresses was proposed to provide protection of riverbanks with anaerobic and aerobic area. The utilization of this was assessed by lab scale model test and pilot plant test. After filling the inside of the gabion mattresses with aggregate, the filtration zone under anaerobic and aerobic conditions was formed to treat the contaminants. In addition, vegetation was deposited on the surfae of the gabion to prevent the inflow of soil and to promote purification by the plant. COD and nitrogen content (T-N, $NH_4{^+}$, -N, $NO_3{^-}N$) were monitored in model and field tests. The lab scale model test showed removal efficiency of 17% of TCOD, 35% of SCOD, 14% of TN, 62% of $NH_4{^+}$, -N, and 33% of $NO_3{^-}$ N. Also, pilot plant test showed removal efficiency of 24% of TCOD, 29% of SCOD, 47% of TN, 50% of $NH_4{^+}-N$, 33% of $NO_3{^-}$, N and 29% of TP.

A Study on the Static Test of Rudder Control System for a Basic Trainer (기본훈련기 방향타 조종장치 정적하중 시험에 관한 연구)

  • Jeon, Chan-Won;Lee, Su-Yong;Gang, Gyu-Seop
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.2
    • /
    • pp.115-121
    • /
    • 2002
  • This report summarized the static test of the rudder system for the KTX-1 basic trainer. The test loads are applied up to the limit and ultimate loads in a stepping sequence. Test loads and test results matt the strength and stiffness requirements of the rudder control system.. Using #004 full scale structure test airframe.

KSR-III 액체 로켓엔진 설계점 연소시험

  • Kim, Seung-Han;Cho, Gyu-Sik;Han, Yeoung-Min;Seo, Seong-Hyun;Moon, Il-Yoon;Lee, Kwang-Jin;Kim, Jong-Kyu;Seol, Woo-Seok;Lee, Soo-Yong
    • Aerospace Engineering and Technology
    • /
    • v.2 no.1
    • /
    • pp.164-170
    • /
    • 2003
  • KSR-III engine with film-cooled baffle was tested. The purpose of this test is to verify the effect of ablative baffle on avoiding combustion instability which occurred in the acoustic cavity case. The engine had expansion ratio of 5.04 and the test condition was design condition(oxidizer mass flow rate 42.04, and fuel 17.95 kg/s). In the test, combustion instability did not occur. So, the effect of film-cooled baffle on avoiding combustion instability was verified.

  • PDF