• Title/Summary/Keyword: 호기성분해

Search Result 117, Processing Time 0.024 seconds

Methods of Determination of Nonbiodegradable Organic Contents in Solid Wastes (고형(固形) 폐기물(廢棄物)내의 생물학적(生物學的)으로 분해불능(分解不能)한 유기물질(有機物質)의 함량(含量)의 결정(決定)에 관한 연구(研究))

  • Choi, Eui So
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.8 no.3
    • /
    • pp.113-118
    • /
    • 1988
  • Laboratory aerobic and anaerobic digesters were operated to determine the nonbiodegradable fractions in PS (Primary Sludge) and WAS (Waste Activated Sludge)from a municipal wastewater treatment plant in Seoul. Nonbiodegradable fractions were determined to be 45 to 47% in PS and 58 to 68% in WAS. Ultimate $CH_4$ gas production rates were estimated to be 0.76 for PS and $0.54m^3/kg$ VS removed for WAS. $CH_4$ contents were respectively 63% for PS and 65% for WAS.

  • PDF

Isolation of Agar Degrading Bacteria, Cytophaga sp. ACLJ-18 and Optimization of Enzyme Production (한천 분해균 Cytophage sp. ACLJ-18의 분리 및 효소 생산 조건 최적화)

  • 조순영;주동식
    • KSBB Journal
    • /
    • v.11 no.5
    • /
    • pp.593-599
    • /
    • 1996
  • The strain which produces agar degrading enzyme was isolated from chiton(Liolophura japonica). The strain was identified as Cytophaga sp. through its morphological, physiological, and biological characteristics. For the production of agar degrading enzyme, 0.3% nutrient broth, 0.2% yeast extract and 0.5% agar was used as nitrogen and carbon source, respectively. The optimal initial pH, NaCl and temperature for the agar degrading activity of Cytophaga sp. were 7.0, 2.0% and $30{\pm}2^{\circ}C$, respectively. Agar degrading activity of enzyme obtained from Cytophaga sp. was increased until the incubation of 96hrs, but after 96hrs, the activity was decreased.

  • PDF

Mechanical Properties and Biodegradability of HDPE/TPS Blends (HDPE/TPS블렌드의 물성 및 생분해도)

  • 이상일;홍경민;서석훈;신용섭;김봉식;신부영
    • Polymer(Korea)
    • /
    • v.26 no.1
    • /
    • pp.145-151
    • /
    • 2002
  • Thermoplastic starch(TPS) was prepared from mixing starch and glycerol by twin extruder. The blends were then prepared from high density polyethylene(HDPE) and TPS. Mechanical properties, thermal properties, and morphology of the blends were investigated. Their biodegradability was also studied by using aerobic composting method(ISO14855). Tensile strength, modulus and elongation at break decreased as the content of TPS increased. In particular elongation at break decreased rapidly even at the lower content of TPS. The melting temperatures of the blends were not changed, which showed that HDPE and TPS were immiscible. The morphology of the fractured surface of blend films was investigated by scanning electron microscopy(SEM). It was found that phases were separated. After composting for 45days, the biodegradability of the blends increased as the content of TPS increased.

Effect of Salinity Concentration on Aerobic Composting of Food Waste (염분함량이 음식물쓰레기의 호기성 퇴비화에 미치는 영향)

  • Kim, Nam-Chan;Kim, Do-Hee
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.8 no.2
    • /
    • pp.124-129
    • /
    • 2000
  • The purpose of this study is to estimate the degradation rate and process efficiency of the composting according to the salinity concentration. The samples of food waste for this study were collected in Pocheon-Gun, Kyungki-Do. The collected samples were adjusted to the optimum range of moisture content, pH and C/N ratio. After that, adding the saline, the samples with 3 different salinity concentrations(1%, 5% and 10%) were made. Then each sample was fed into the reactor with temperature controller. During the aerobic composting process, the change of the physical and chemical properties of the sample as temperature, pH, C/N ratio and $CO_2$ and $O_2$ concentration in the reactor were measured. From the experiment of this study, the result are following. The highest temperatures are $59^{\circ}C$ at RUN 1(1% salinity conc.), $49^{\circ}C$ at RUN 2(5% salinity conc.) and $45^{\circ}C$ at RUN 3(10% salinity conc.). The change of $CO_2$ production and $O_2$ consumption have the positive correlation with the change of the temperature. $CO_2$ production and $O_2$ consumption are peaked at the low salinity concentration. During composting, Run 1, RUN 2 and RUN 3 are increased pH to 8.9, 8.6 and 7.2 and slowly decreased C/N ratio to 18.9, 19.1 and 22.1 and moisture content to 51.1%, 53.7% and 55.0%, respectively. It is supposed that increasing salinity concentration causes the retarding of the microbial degradation activities during the composting. And for the efficient composting, the salinity concentration in the sample hat to be maintained below 5%.

  • PDF

Isolation and Characterization of an Agar-degrading Bacterium, Isolated from The Sea Water

  • Mun, Hyeon-Sik;Hong, Seung-Hyeon;Heo, Mun-Su
    • 한국생물공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.340-342
    • /
    • 2005
  • An agar degrading bacterium, This strain was isolated from sea water in Jeju. The strain is Gram-negative, rod and strictly aerobe for growth. The identification bases on the 16S rRNA gene sequencing showed that the strain was closely related to the genus Agariovarans sp. and named Agariovorans sp. JA1. The strain grew on agar as a sole carbon and energy source and produced an extra cellular agarase. For the increase of agarase productivity, 0.5% agar, yeast extract and $NaNO_3$ were used as carbon, organic and inorganic nitrogen source, respectively. For effective production of agarase and growth, the pH, temperature and NaCl concentration were was pH 7, $25^{\circ}C$ $^{\sim}$ $30^{\circ}C$ and 2%, respectively.

  • PDF

Microcosm Study on BTEX and MTBE (Methyl Tert-Butyl Ether) Biodegradation under Aerobic-Anaerobic Conditions (호기/혐기성 조건에서의 BTEX 및 MTBE 동시 분해특성)

  • Oh, Inseok;Lee, Changyeol;Lee, Jongin;Kim, Jitae;Chang, Soonwoong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.5
    • /
    • pp.39-46
    • /
    • 2014
  • The objectives of this study were to determine biodegradation and characteristics of BTEX and MTBE under aerovic-anaerobic conditions and evaluate the potential of natural attenuation method in denitrifying condition.. In the single-substrate experiments, all of the BTEX compounds were degraded under all the conditions. but, lower degradation of benzene and p-xylene were observed under aerobic condition due to the lack of oxygen initially supplied. In the mixed-substrate experiments, BTEX degradation was delayed compared to that in the single-substrate experiments due to a competition of the substrates. Biodegradation of MTBE was observed only under denitrifying conditions and we expected that MTBE mineralized to $CO_2$ without the accumulation of TBA. We also conducted to determine the effect of initial nitrate concentration on BTEX and MTBE degradation. At low nitrate concentration (<50 mg/L), BTEX degradations were limited by the lack of electron acceptor and BTEX degradation was inhibited at high nitrate concentration (>200 mg/L). The results in this study indicated that biotransformation could be applied to the gasoline-contaminated region under aerovic-anaerobic.

Effects of Advanced Oxidation of Penicillin on Biotoxicity, Biodegradability and Subsequent Biological Treatment (고도산화공정 처리가 페니실린의 생독성, 생분해도 및 생물학적 분해에 미치는 영향)

  • Luu, Huyen Trang;Minh, Dang Nhat;Lee, Kisay
    • Applied Chemistry for Engineering
    • /
    • v.29 no.6
    • /
    • pp.690-695
    • /
    • 2018
  • Advanced oxidation processes (AOPs) composed of O3 and UV were applied to degrade penicillin (PEN). The degradation efficiency was evaluated in terms of changes in the absorbance (ABS) and total organic carbon (TOC). The combination of $O_3/H_2O_2/UV$ and $O_3/UV$ showed the best performance for the reduction of ABS (100% for 9 min) and TOC (70% for 60 min) values, although the mineralization was uncompleted under the experimental condition in this study. The change in biotoxicy was monitored with Escherichia coli susceptibility and Vibrio fischeri biofluorescence. The E. coli susceptibility was eliminated completely for 9 min by $O_3/UV$, and the toxicity to V. fischeri biofluorescence was 57% reduced by $O_3/H_2O_2/UV$. For the ultimate treatment of PEN, it is suggested that an AOP using $O_3/UV$ is followed by biological treatment, utilizing the enhanced biodegradability by the AOP. During 30 min of $O_3/UV$ treatment, the $BOD_5/COD$ ratio as an indication of biodegradability showed about 4-fold increment, compared to that of using a non-treated sample. TOC removal rate for AOP-pretreated PEN wastewater increased 55% compared to that of using the non-pretreated one through an aerobic biological treatment by Pseudomonas putida for artificial wastewater containing 20 mg/L of PEN. In conclusion, $O_3/UV$ process is recommended as a pretreatment step prior to an aerobic biological process to improve the ultimate degradation of penicillin.

Removal of Offensive Odor in Fermentation Compost Process (퇴비화 공정의 발효상에서 악취제거)

  • Hong, Young-Ho
    • Proceedings of the KAIS Fall Conference
    • /
    • 2009.12a
    • /
    • pp.652-654
    • /
    • 2009
  • 퇴비화는 유기물질이 분해되는 조건에 따라 호기성 퇴비화(Aerobic composting)와 혐기성 퇴비화(Anaerobic composting)로 대별된다. 음식물쓰레기 퇴비화 시설의 주요공정은 선별시설, 혼합 및 발효시설, 불순물제거장치, 숙성시설, 악취제거시설로 구성된다. 본 과제에서는 이와 같이 음식폐기물 처리공정 등에 널리 사용되는 퇴비화 공정에서 발생하는 악취를 제거하기 위한 연구를 진행하였다. 본 연구에서는 다양한 형태의 탈취 공정을 비교 검토하였으며, 세라믹 담체를 사용한 생물학적 처리에 초점을 맞추어 연구를 진행하였다. 이를 위하여 퇴비화 온도에 따른 유기물의 변화와 NaCl의 농도변화를 측정하여 퇴비화 진행에 따른 성분 변화를 예측하였다.

  • PDF

제지폐수 재활용을 위한 생물막 여과법(BAF)과 Membrane 공정의 최적화

  • 박수환;김기량;이용택;오중교
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1997.10a
    • /
    • pp.133-134
    • /
    • 1997
  • 1. 서론 : 제지산업은 용수 다소비용 산업으로, 생산하는 제품 톤당 약 40톤으로 폐수가 배출되고 있으며 공정내로 재활용하는 폐수량을 고려한다면 그 사용량은 더욱 클 것이다. 이와 같은 다량의 용수 사용으로 인하여 제지 공장의 폐수를 제조공정에서 재활용하는 방법이나 배출량을 감소시키는 방안들이 법률적이나 경제적인 측면에서 연구되고 있는 실정이다. 본 연구에서는 기존의 응집, 침전공정을 대신하고 여재를 이용힌 물리적 여과와 활성높은 미생물이 여재 표면에 부착되어 수중 유기물질을 생물학적으로 분해 제거하는 이중의 효과를 거둘 수 있는 호기성 생물막 공정을 도입하고 그 처리수의 유기물 및 용존 무기물을 Membrane 공정으로 제거함으로써 제지공업폐수를 재활용하여 용수기준까지 처리하 System의 개발을 그 목적으로 하였다.

  • PDF

광합성미생물이용에 의한 폐수처리

  • 소림달치
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 1979.10a
    • /
    • pp.236-238
    • /
    • 1979
  • 자연계에 배출되는 유기물함유폐수는 Figl 에 나타난 바와 같이 미생물의 생태적변동에 의해 정화된다. (표 1참조)이 자연현상을 인공장치에 의해 효율좋게 정화시키는 연구를 20수년전부터 개시하여 Test plant 및 Pilot plant을 작제하여, 검토하여 현재는 Fig. 2.에 나타난 바와 같은 실용화 plant가 다수, 가동하게 되었다. Fig. 2의 flow pheet를 개약설명한다. 먼저 폐수원액은 vibrating filter를 통과시키므로서 고형물은 제거된다. 이 용액을 구기조(Aeration tank)에 투입하여, 맹렬히 통기하면서, 호기분해를 행한다. 1 일간, 포기후, 호기성균체를 포함한 용액을 다음의 광합성세균배양조에 이행시켜, 4 일간 체류시키므로서 광합성세균등을 증식시킨다. 그후 응집침전제를 첨가하여, 광합성세균등의 Bacterial mass는 회수된다. 그 상맥부는 최종적으로 포기되고, (동기, 한랭에 있어서는 산포여상 Contact oxidation tower를 통과시킨다.) 소량의 침전제을 분리한 후 방류한다, 광합성세균이용에 의한 수처리기술의 특징은 1) 농후유기폐수를 희석하지 않고 정화처리할 수 있다. 2) 표3에 나타난 바와같이 적용할 수 있는 폐수의 종류는 많다. 3) 부산물로서 회수한 균체는 축산사료나 수산사료로서 이용할 수 있다. 표4 및 표5는 산난계 및 부화직후의 치어의 첨가사료 로서 이용한 일예이다.

  • PDF