• Title/Summary/Keyword: 형상학적 변형

Search Result 122, Processing Time 0.029 seconds

Numerical Analysis of Deformation Behaviour of Underground Opening in a Discontinuous Rock Mass Using a Continuum Joint Model (연속체 절리모델을 이용한 불연속성암반 내 지하공동의 변형거동에 관한 수치해석)

  • Kang Sang Soo;Lee Jong-Kil;Baek Hwanjo
    • The Journal of Engineering Geology
    • /
    • v.15 no.3
    • /
    • pp.257-268
    • /
    • 2005
  • In situ rock mass is generally heterogeneous and discontinuous, with varying degrees of strength along the planes of weakness. The planes of weakness such as joints, faults, cracks and bedding planes, control the strength and deformation characteristics of the rock mass. Subsequently, the stability of underground opening depends upon the spatial distribution of discontinuities and their mechanical properties in relation with geometrical shape of openins as well as the mechanical properties of intact rock materials. Understanding the behaviour of a discontinuous rock mass remains a key issue for improving excavation design in hiかy stressed environments. Although recent advances in rock mechanics have provided guidelines for the design of underground opening in isotropic rock mass, prediction and control of deformation in discontinuous rock masses are still unclear. In this study, parametric study was performed to investigate the plastic zone size, stress distribution and deformation behavior around underground opening in a discontinuous rock mass using a continuum joint model. The solutions were obtained by an elasto-plastic finite difference analysis, employing the Mohr-Coulomb failure criteria. Non-associated flow rule and perfectly plastic material behavior are also assumed.

Comparison Study of Elastic Catenary and Elastic Parabolic Cable Elements for Nonlinear Analysis of Cable-Supported Bridges (케이블교량의 비선형해석을 위한 탄성현수선 및 탄성포물선 케이블요소의 비교연구)

  • Song, Yo Han;Kim, Moon Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.5A
    • /
    • pp.361-367
    • /
    • 2011
  • This study introduces an elastic parabolic cable element for initial shaping analysis of cable-supported structures. First, an elastic catenary cable theory is shortly summarized by deriving the compatibility condition and the tangent stiffness matrices of the elastic catenary cable element. Next, the force-deformation relations and the tangent stiffness matrices of the elastic parabolic cable elements are derived and discussed under the assumption that sag configuration under self-weights is small. In addition the equivalent cable tension is defined in the chord-wise direction. Finally, to demonstrate the accuracy of the elastic parabolic cable element, nonlinear relationships of nominal cable tension-chord length and nominal cable tension-tangential stiffness for a single element are presented and compared with results using an elastic catenary cable theory as the slope is varied.

Optimized Design of O-ring Groove in LPG Filling Unit Using Taguchi Experimental Method (다구찌 실험법을 이용한 LPG 충전노즐 O-링 그루브의 최적화 설계연구)

  • Kim Chung-Kyun
    • Journal of the Korean Institute of Gas
    • /
    • v.10 no.2 s.31
    • /
    • pp.40-46
    • /
    • 2006
  • In this paper, the optimized design of a rectangular O-ring groove has been analyzed for a maximum Cauchy stress and maximum strain using the Taguchi method. This method may efficiently optimize the design parameters for an O-ring groove of a LPG filling unit. The computed FEM results indicate that the optimized design parameters can only be drawn by nine experimental numbers of iterations when the Taguchi design technique has been employed with a finite element method. This means that the Taguchi design method is very useful for the optimization design of O-ring rectangular groove geometry. Based on the computed FEM results by the Taguchi design technique, the dimensions of a groove geometry are given as h=2.5 mm, d=2.74 mm, c=0.15 mm, and w=3.0 mm. In this study, the initial compression ratio of O-rings is recommended as 8.7% for a gas supply pressure of 18 $kg/cm^2$.

  • PDF

A Geometrically Nonlinear Dynamic Analysis of Shallow Circular Arches Using Total Lagrangian Formulation (Total Lagrangian 문제형성에 의한 낮은 원호아치의 동적 비선형거동 해석)

  • Kim, Yun Tae;Kim, Moon Kyum;Hwang, Hak Joo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.10 no.2
    • /
    • pp.39-48
    • /
    • 1990
  • For shallow circular arches with large dynamic loading, use of linear analysis is no longer considered as practical and accurate. In this study, a method is presented for the dynamic analysis of the shallow circular arches in which geometric nonlinearity is dominant. A program is developed for analysis of the nonlinear dynamic behavior and for evaluation of the critical buckling loads of the shallow circular arches. Geometric nonlinearity is modeled using Lagrangian description of the motion and finite element analysis procedure is used to solve the dynamic equations of motion in which Newmark method is adopted as a time marching scheme. A shallow circular arch subject to radial step load is analyzed and the results are compared with those from other researches to verify the developed program. The critical buckling loads of shallow arches are evaluated using the non-dimensional parameter. Also, the results are compared with those from linear analysis.

  • PDF

Effect of Surfactants on the Controlled Release of Bupivacaine HCl from Biodegradable Microfluidic Devices (생분해성 마이크로 유체 약물전달장치의 Bupivacaine HCl 전달특성에 대한 계면활성제의 영향)

  • Yang, Sung-Yeun;Lee, Kang-Ju;Ryu, Won-Hyoung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.5
    • /
    • pp.545-551
    • /
    • 2012
  • We investigated the diffusive transport of bupivacaine HCl through the microchannels of microfluidic drug delivery devices. In the biodegradable microfluidic drug delivery devices developed in this research, the drug release rate can be controlled by simply modulating the geometrical parameters of the microchannels, such as the length, number, and cross-sectional area of the microchannels, when the microchannels are used as paths for drug release. However, the hydrophobic nature of a biodegradable polymer, 85/15 poly(lactic-co-glycolic acid), hinders the infiltration of a release medium (phosphate-buffered saline) through the microchannels into the reservoir of a device that contains bupivacaine HCl, at the early stage of drug release. This can have an adverse effect on the early stage release of local analgesic compounds from the device. In this study, microfluidic channels were surface-treated with surfactants such as PEG600 and Tween80, and the effects of the surfactants on the release performance are presented and analyzed.

Nondestructive Damage Sensitivity of Carbon Nanotube and Nanofiber/Epoxy Composites using Electro- Micromechanical Technique and Acoustic Emission (전기적-미세역학 시험법과 음향 방출을 이용한 탄소 나노튜브와 나노섬유 강화 에폭시 복합재료의 비파괴 손상 감지능)

  • 김대식;박종만;김태욱
    • Polymer(Korea)
    • /
    • v.28 no.4
    • /
    • pp.285-290
    • /
    • 2004
  • Nondestructive damage sensitivity of carbon nanotube(CNT) and nanofiber (CNF)/epoxy composites with their adding contents was investigated using electro-micromechanical technique. Carbon black (CB) was used only for the comparison with CNT and CNF. The fracture of carbon fiber was detected by acoustic emission (AE), which was correlated to the change in electrical resistance, ΔR under double-matrix composites (DMC) test. Stress sensing on carbon nanocomposites was performed by electro-pullout test under uniform cyclic loading. At the same volume fraction, the damage sensitivity for fiber fracture, matrix deformation and stress sensing were highest for CNT/epoxy composite, whereas for CB/epoxy composite they were the lowest among three carbon nanomaterials (CNMs). Damage sensitivity was correlated with morphological observation of carbon nanocomposites. Homogeneous dispersion among CNMs could be keying parameters for better damage monitoring. In this study, damage sensing of carbon nanocomposites could be evaluated well nondestructively by the electrical resistance measurement with AE.

General Theory for Free Vibration and Stability Analysis of Thin-walled Space Frames (박벽 공간뼈대구조의 자유진동 및 안정성해석을 위한 일반이론)

  • 김문영;김성보
    • Computational Structural Engineering
    • /
    • v.11 no.1
    • /
    • pp.191-204
    • /
    • 1998
  • The general formulation for free vibration and stability analysis of unsymmetric thin-wared space frames is presented in case where the shear deformation effects are neglected. The kinetic and total potential energies are derived by applying the extended virtual work principle, introducing displacement parameters defined at the arbitrarily chosen axis and including warping deformation and second order terms of finite semitangential rotations. In formulating the finite element procedure, cubic Hermitian polynomials are utilized as shape functions of the two node space frame element. Mass, elastic stiffness, and geometric stiffness matrices for the unsymmetric thin-walled section are evaluated, and load-correction stiffness matrices for off-axis distributed loadings are considered. In order to illustrate the accuracy and practical usefulness of this formulation, finite element solutions for the free vibration and stability problems of thin-walled beam-columns and space frames are presented and compared with available solutions.

  • PDF

Development of Mesh Generator for 2D Hydraulic Analysis(Ⅴ) (2차원 수리해석을 위한 범용 Mesh Generator의 개발(Ⅴ))

  • Kim, Eu-Gene;Lee, Seung-Hyun;Oh, Chung-Whan;Kim, Hong-Sik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.815-821
    • /
    • 2009
  • 하천의 2차원 흐름 및 하상변동, 오염확산 해석을 위한 유체의 수치해석법에는 유한요소법, 유한차분법, 유한차분법의 변형인 유한체적법, 경계적분법 등이 있으며, 국내의 경우 비구조적 요소망(unstructured mesh)을 이용하여 복잡한 형상을 표현하기가 상대적으로 용이한 유한요소법이 널리 사용되고 있다. 하천을 유한 요소화 하는 전처리 과정은 전체 해석 과정을 자동화 하는데 있어 필수적인 요소이며, 주로 삼각 요소망 또는 사각 요소망을 이용하여 해석을 수행하게 된다. 삼각 요소망의 경우 상대적으로 자동화하기 쉬운 반면 사각 요소망의 생성은 절점 생성 자체가 삼각 요소망 보다 더 많은 기하학적 제한 요소를 가지고 있기 때문에 상대적으로 완성도 높은 알고리즘을 구현하기가 어렵다 할 수 있다. 이에 따라 본 연구에서는 2차원 상에서 사각 요소망(quadrilateral elements)을 생성할 수 있는 Paving method를 중심으로 한 요소망 생성 알고리즘에 대해 고찰하고, 국내 최초의 범용 수치해석 모형인 RAMS(River Analysis and Modeling System)에 적용하였다. Paving method는 1990년에 Blacker and Stephenson에 의해 제안되었으며, Sandia National Laboratories에 의해 완성되었다. Paving Method는 advancing front style의 요소망을 생성하게 되고, 바깥쪽에서 안쪽으로 element layer를 생성하면서 채워나간다. 본 연구에서는 기존의 요소망 생성 프로세스에서 element 삽입 전의 검증 기능을 강화한 새로운 버전의 paving method를 적용하엿다.

  • PDF

Crease Behavior of Thin Membrane (멤브레인의 접힘 거동 연구)

  • Woo, Kyeong-Sik
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.10
    • /
    • pp.905-911
    • /
    • 2007
  • In this paper, geometrically and materially non-linear finite element analyses were performed to study the crease behavior of thin membranes. The cross-section of the membrane was modeled with 2-dimensional plane strain elements. To simulate the creasing process, the membrane mesh was folded, compressed to prescribed crease gauge by activating two rigid contact surfaces, and then released to give the crease topology. Various crease gauges were considered to investigate the effect of crease intensity on the initial deployment angle. The crease geometry was also obtained by experiments and the results were compared.

Stress Analyses of the Gimbal Bellows for a Lox Pipe (산화제 배관 김발 주름관 응력 해석)

  • Yoo, Jae-Han;Moon, Il-Yoon;Lee, Soo-Yong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.477-480
    • /
    • 2011
  • The stress analyses of the 'U'-shaped multi-ply reinforced gimbal bellows under high pressure and rotational displacement loadings are performed at the room and cryogenic temperatures. The bellows are used for the Lox pipe line which connects the combustion chamber with the turbopump of a liquid rocket engine. The distributions of the stress, the strains and the contact pressures are obtained from the finite element analysis considering the geometric non-linearities of the contacts between the plies and the material one of the isotropic plasticity. Those are compared with the stress results from EJMA (Expansion Joint Manufacturing Association) standard. Also, the effects of the operating temperature and the reinforcing ring on the stresses are investigated.

  • PDF