• Title/Summary/Keyword: 협력주행 인프라

Search Result 26, Processing Time 0.027 seconds

Development of Evaluation Indicators for Optimizing Mixed Traffic Flow Using Complexed Multi-Criteria Decision Approaches (다기준 복합 가중치 결정 기반 혼재 교통류 최적화 평가지표 개발)

  • Donghyeok Park;Nuri Park;Donghee Oh;Juneyoung Park
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.23 no.2
    • /
    • pp.157-172
    • /
    • 2024
  • Autonomous driving technology, when commercialized, has the potential to improve the safety, mobility, and environmental performance of transportation networks. However, safe autonomous driving may be hindered by poor sensor performance and limitations in long-distance detection. Therefore, cooperative autonomous driving that can supplement information collected from surrounding vehicles and infrastructure is essential. In addition, since HDVs, AVs, and CAVs have different ranges of perceivable information and different response protocols, countermeasures are needed for mixed traffic that occur during the transition period of autonomous driving technology. There is a lack of research on traffic flow optimization that considers the penetration rate of autonomous vehicles and the different characteristics of each road segment. The objective of this study is to develop weights based on safety, operational, and environmental factors for each infrastructure control use case and autonomous vehicle MPR. To develop an integrated evaluation index, infra-guidance AHP and hybrid AHP weights were combined. Based on the results of this study, it can be used to give right of way to each vehicle to optimize mixed traffic.

Reliability Verification of Secured V2X Communication for Cooperative Automated Driving (자율협력주행을 위한 V2X 보안통신의 신뢰성 검증)

  • Jung, Han-gyun;Lim, Ki-taeg;Shin, Dae-kyo;Yoon, Sang-hun;Jin, Seong-keun;Jang, Soo-hyun;Kwak, Jae-min
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.5
    • /
    • pp.391-399
    • /
    • 2018
  • V2X communication is a technology in which a vehicle exchanges information with various entities such as other vehicles, infrastructure, networks, pedestrians, etc. through a wired or wireless network. Recently, V2X communication technology has been steadily developed and recently it has played an important role in autonomous cooperation driving technology combined with autonomous vehicle technology. Autonomous vehicles can utilize the external information received via V2X communication to extend the recognition range of existing sensors and to support more safe and natural autonomous driving. In order to operate these autonomous cooperative vehicles on public roads, the security and reliability of autonomous V2X communication should be verified in advance. In this paper, we present test scenarios and test procedures of secure V2X communication for cooperative automated driving and present verification results.

A Study on Position Correction Sign for Autonomous Driving Vehicles (자율주행 자동차를 위한 측위 보정 표지 연구)

  • Young-Jae JEON;Chul-Woo PARK;Sang-Yeon WON;Jun-Hyuk LEE
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.26 no.4
    • /
    • pp.161-172
    • /
    • 2023
  • Autonomous driving vehicles recognize the surroundings through various sensors mounted on the vehicle and control the vehicle based on the collected information. The level of autonomous driving technology is improving due to the development of sensor technology and algorithms that process collected data, but the implementation of perfect autonomous driving technology has not been achieved. To overcome these limitations, through autonomous cooperative driving centered on infrastructure. In this study, developed a position correction sign that provides a reference for positioning of autonomous vehicles. First of all, an analysis was performed on the current status of positioning technology for autonomous driving. And measure the number of point clouds for the 1st sample consisting of two square reflective surfaces and 2nd sample that increased the vertical length of each reflective surface. Experimental results show that both primary and secondary products are installed at least 15 m apart It could be recognized as a sensor, and it was confirmed that the secondary production that increased the length of the top and bottom had a higher number of point clouds than the primary production and better expressed the shape of the facility.

The Future Direction of HD Map Industry Development Plan and Governance (정밀도로지도 산업 발전 방향 및 대응방안 연구)

  • WON, Sang-Yeon;MOON, Ji-Young;YOON, Seo-Youn;CHOI, Yun-Soo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.22 no.3
    • /
    • pp.120-132
    • /
    • 2019
  • As a key infrastructure for positioning autonomous vehicles, HD maps are making efforts to equip autonomous vehicles and connect them with services worldwide. Global companies like Here and TomTom have contracted an agreement with three German automobile companies(BMW, Audi, Daimler) by establishing systems including from the production of HD maps to loading autonomous vehicles. Japan has organized a DMP(Dynamic Map Platform) by collaborating public and private section and performing establishment of HD map on private section-oriented. Korean companies related with autonomous vehicles are also cooperating with various companies such as vehicles, sensors and maps. But public and private sections are establishing HD maps respectively. Accordingly, Ministry of Land, Infrastructure and Transport implemented and signed memorandum for private and public cooperation in April 2019, Joint establishment council of HD map has launched in August 2019. This study performed domestic and foreign trend analysis about HD map and interviewed to related companies. And analyzed solutions for interactive cooperation of private and public section in HD map industry, purposed step-by-step strategy for operation and operation plan for joint establishment council of HD map.

Operation of Sensor and Big data from Smart City CCTV System for Developing Security Technology (스마트시티를 위한 보안기술 개발용 관제시스템 센서 및 빅데이터 운영)

  • Lee, Sinjae
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2022.05a
    • /
    • pp.379-380
    • /
    • 2022
  • KAIST 캠퍼스 기반의 실습환경 구축을 위하여 캠퍼스 전체를 스마트시티 테스트베드로 사용하며 CCTV 네트워크 기반 모니터링/관제 시스템 구축, 교통, 방범, 가로등, CCTV, 교내 버스 등 인프라 통합 관제 및 보안 실습실 구축하고 교내 자율주행 기술 연구진과 실습 협력 추진을 통한 캠퍼스 기반의 실전 스마트 환경을 토대로 다각도의 보안 공격/방어 실습을 진행하고 지자체 및 컨소시엄 기업들과 산학협력 프로젝트를 진행하기 위하여 구축한 내용을 설명한다.

A Method of Extracting Features of Sensor-only Facilities for Autonomous Cooperative Driving

  • Hyung Lee;Chulwoo Park;Handong Lee;Sanyeon Won
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.12
    • /
    • pp.191-199
    • /
    • 2023
  • In this paper, we propose a method to extract the features of five sensor-only facilities built as infrastructure for autonomous cooperative driving, which are from point cloud data acquired by LiDAR. In the case of image acquisition sensors installed in autonomous vehicles, the acquisition data is inconsistent due to the climatic environment and camera characteristics, so LiDAR sensor was applied to replace them. In addition, high-intensity reflectors were designed and attached to each facility to make it easier to distinguish it from other existing facilities with LiDAR. From the five sensor-only facilities developed and the point cloud data acquired by the data acquisition system, feature points were extracted based on the average reflective intensity of the high-intensity reflective paper attached to the facility, clustered by the DBSCAN method, and changed to two-dimensional coordinates by a projection method. The features of the facility at each distance consist of three-dimensional point coordinates, two-dimensional projected coordinates, and reflection intensity, and will be used as training data for a model for facility recognition to be developed in the future.

Smart Car Network Technology and Standardization Trends (스마트카 네트워크 기술 및 표준화 동향)

  • Yun, H.J.;Song, Y.S.;Choi, J.D.;Sohn, J.C.
    • Electronics and Telecommunications Trends
    • /
    • v.30 no.5
    • /
    • pp.39-48
    • /
    • 2015
  • 최근 스마트카 기술은 안전운전지원 센서 기반의 단독형 시스템에서 도로 인프라와 빅 데이터를 기반으로 ICT와 연계하여 교통흐름을 예측하고 대응할 수 있는 협력형 자율주행 서비스 개발로 발전하고 있다. 협력형 자율주행 서비스를 실현하거나, IoT 환경과 스마트카의 융합을 위해서는 스마트카에서 커넥티비티 역량이 무엇보다도 중요하게 되었으며 이를 위한 요소기술로 차량용 이더넷, V2X(Vehicle to Everything) 네트워킹, 네트워크 보안기술을 꼽을 수 있다. 본고에서는 스마트카에 적용되는 차량 내부 네트워크 및 게이트웨이, V2X 네트워킹 및 보안에 관한 최근 표준 기술동향 및 이슈를 살펴보고자 한다.

  • PDF

A Methodology on System Implementation for Road Monitoring and Management Based on Automated Driving Hazard Levels (위험도 기반 도로 모니터링 및 관리 시스템 구축 방안)

  • Kyuok Kim;Sang Soo Lee;SunA Cho
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.6
    • /
    • pp.299-310
    • /
    • 2022
  • The ability of an automated driving system is based on vehicle sensors, judgment and control algorithms, etc. The safety of automated driving system is highly related to the operational status of the road network and compliant road infrastructure. The safe operation of automated driving necessitates continuous monitoring to determine if the road and traffic conditions are suitable and safe. This paper presents a node and link system to build a road monitoring system by considering the ODD(Operational Design Domain) characteristics. Considering scalability, the design is based on the existing ITS standard node-link system, and a method for expressing the monitoring target as a node and a link is presented. We further present a technique to classify and manage hazard risk into five levels, and a method to utilize node and link information when searching for and controlling the optimal route. Furthermore, we introduce an example of system implementation based on the proposed node and link system for Sejong City.

Technology Trends of Automatic Vehicle Guidance System (IT 융합기반 차량 자동유도 기술개발 동향)

  • An, K.H.;Sung, K.B.;Jang, J.A.;Kwak, D.Y.;Lim, D.S.
    • Electronics and Telecommunications Trends
    • /
    • v.26 no.6
    • /
    • pp.47-57
    • /
    • 2011
  • DARPA 무인차 대회 우승과 구글 자율주행 자동차로 유명한 세바스찬 스런 스탠포드대 교수는 18살이 되던 해에 가장 친한 친구를 교통사고로 잃었고, 그것을 계기로 계기로 무인차 개발에 나서게 되었다고 한다. 현재 대부분의 교통사고는 운전자의 과실로 발생하며, 기계의 보조나 자동제어가 있다면 대부분 예방할 수 있다. 또한 자동으로 차선을 유지하고 차간거리를 유지하게 해준다면 도로의 교통 수용량을 2배 내지 3배로 높일 수 있으며, 도로에서 보내는 시간과 연료를 절약할 수 있다. 현재 지능형 자동차 및 도로 인프라 기술은 이러한 운전자의 안전성, 편의성, 교통 효율성, 에너지 절약을 달성하기 위한 자동차와 인프라 간의 협력형 ITS(C-ITS: cooperative ITS) 방향으로 기술개발이 이루어지고 있으며, 본 고에서는 이와 관련된 차량 자동유도 요소 기술 및 동향에 대해서 살펴본다.

  • PDF

Analysis of Driving and Environmental Impacts by Providing Warning Information in C-ITS Vehicles Using PVD (PVD를 활용한 C-ITS 차량 내 경고정보 제공에 따른 주행 및 환경영향 분석)

  • Yoonmi Kim;Ho Seon Kim;Kyeong-Pyo Kang;Seoung Bum Kim
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.5
    • /
    • pp.224-239
    • /
    • 2023
  • C-ITS (Cooperative-Intelligent Transportation System) refers to user safety-oriented technology and systems that provide forward traffic situation information based on a two-way wireless communication technology between vehicles or between vehicles and infrastructure. Since the Daejeon-Sejong pilot project in 2016, the C-ITS infrastructure has been installed at various locations to provide C-ITS safety services through highway and local government demonstration projects. In this study, a methodology was developed to verify the effectiveness of the warning information using individual vehicle data collected through the Gwangju Metropolitan City C-ITS demonstration project. The analysis of the effectiveness was largely divided into driving behavior impact analysis and environmental analysis. Compliance analysis and driving safety evaluation were performed for the driving impact analysis. In addition, to supplement the inadequate collection of Probe Vehicle Data (PVD) collected during the C-ITS demonstration project, Digital Tacho Graph ( DTG ) data was additionally collected and used for effect analysis. The results of the compliance analysis showed that drivers displayed reduced driving behavior in response to warning information based on a sufficient number of valid samples. Also, the results of calculating and analyzing driving safety indicators, such as jerk and acceleration noise, revealed that driving safety was improved due to the provision of warning information.