• Title/Summary/Keyword: 협력주행 인프라

Search Result 26, Processing Time 0.022 seconds

Infrastructure 2D Camera-based Real-time Vehicle-centered Estimation Method for Cooperative Driving Support (협력주행 지원을 위한 2D 인프라 카메라 기반의 실시간 차량 중심 추정 방법)

  • Ik-hyeon Jo;Goo-man Park
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.23 no.1
    • /
    • pp.123-133
    • /
    • 2024
  • Existing autonomous driving technology has been developed based on sensors attached to the vehicles to detect the environment and formulate driving plans. On the other hand, it has limitations, such as performance degradation in specific situations like adverse weather conditions, backlighting, and obstruction-induced occlusion. To address these issues, cooperative autonomous driving technology, which extends the perception range of autonomous vehicles through the support of road infrastructure, has attracted attention. Nevertheless, the real-time analysis of the 3D centroids of objects, as required by international standards, is challenging using single-lens cameras. This paper proposes an approach to detect objects and estimate the centroid of vehicles using the fixed field of view of road infrastructure and pre-measured geometric information in real-time. The proposed method has been confirmed to effectively estimate the center point of objects using GPS positioning equipment, and it is expected to contribute to the proliferation and adoption of cooperative autonomous driving infrastructure technology, applicable to both vehicles and road infrastructure.

Study on Applying New Infrastructure for Autonomous Driving in HD Maps (자율주행을 위한 인프라의 정밀도로지도 적용 방안 연구)

  • Young-Jae JEON;Chul-Woo PARK;Sang-Yeon WON;Jun-Hyuk LEE
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.26 no.4
    • /
    • pp.116-129
    • /
    • 2023
  • Recently, interest in autonomous driving has drawn attention to autonomous cooperative driving, which considers the development of driving technology of autonomous vehicles and the development of infrastructure that constitutes a driving environment. According to the concept of autonomous cooperative driving, This study analyzes the new infrastructure for autonomous driving that can complement the information of existing precise road maps and adding HD map layer as the new infrastructure. The new infrastructure for autonomous driving presented two types of improved facilities and one type of sensor only facility. Analysis of HD maps shows that information such as junction points rarely changes, but it is expected that infrastructure for autonomous driving can be added to convey the meaning of paying attention to obstacles that may arise at the junction. In this way, the new infrastructure for autonomous driving needs to support the roles of guidance, instruction, and attention that existing road facilities.

Reliable Multicast MAC Protocol for Cooperative Autonomous Vehicles (협력적 자율 차량을 위한 신뢰성있는 멀티케스트 MAC 프로토콜)

  • Kim, Jungsook;Kim, Juwan;Choi, Jeongdan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39B no.3
    • /
    • pp.180-187
    • /
    • 2014
  • This paper introduces reliable multicast MAC protocol for cooperative unmanned vehicles. cooperative unmanned vehicles communicate with infrastructure and other unmanned vehicles in order to increase driving safety. They exchange information related to driving and thus it requires real-time and reliable multicast. However, the international vehicular communication standard, IEEE 802.11p WAVE, does not provide a reliable multicast scheme on the MAC layer. To address the problems of reliability, we propose a reliable multicast protocol called WiVCL, which avoids contention and collision. Our evaluation shows that the WiVCL achieves a high degree of reliability and real-time features.

Some Lessons Learned from Previous Studies in Cooperative Driving Automation (협력형 자율주행 기술 개발 동향과 시사점)

  • Jeon, Hyeonmyeong;Yang, Inchul;Kim, Hyoungsoo;Lee, Junhyung;Kim, Sun-Kyum;Jang, Jiyong;Kim, Jiyoon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.4
    • /
    • pp.62-77
    • /
    • 2022
  • A cooperative driving automation system is imperative to overcome the limitation of the stand-alone automated driving technology. By definition, a cooperative driving automation system refers to a technology in which an automated vehicle cooperates with other vehicles or infrastructure to increase driving efficiency and safety. Specifically, in this study, the technical elements necessary for the cooperative driving automation technology and the technological research trends were investigated. Subsequently, implications for future cooperative driving automation technology development were drawn through the research trends. Finally, the importance of cooperative driving automation technology and infra-guidance service for automated vehicles were discussed.

A Study on the Performance Evaluation of C-ARS(Cooperative Automated Roadway System) in Infrastructure to Vehicle (I2V) Communication Based Service Scenario (인프라-차량(I2V) 통신 기반 서비스 시나리오에 따른 자율협력주행 도로시스템 성능평가 방안 연구)

  • Bae, Myoung Hwan;Kwon, Oh Yong;Kim, Jung Min;Jeong, Hong Jong
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.17 no.4
    • /
    • pp.112-123
    • /
    • 2018
  • The C-ARS(Cooperative Automated Roadway System) refers to a road infrastructure system that links automated vehicles with road infrastructure and communicates with each other via V2X communication to support automated vehicles. The purpose of this study is to suggest a performance evaluation method of C-ARS service. This study exemplifies the 'Work zone information service' among I2V service that provide information to automated vehicles in road infrastructure. First, we define the requirements and service scope needed to check the use case analysis and service performance of the service, and propose an evaluation system for performance evaluation of these services. In addition, the evaluation system was used to verify the feasibility of evaluation through the field test of 'Work zone information service'.

Impact Analysis of Connected-Automated Driving Services on Urban Roads Using Micro-simulation (미시교통시뮬레이션 기반 도심도로 자율협력주행 서비스 효과 분석)

  • Lee, Ji-yeon;Son, Seung-neo;Park, Ji-hyeok;So, Jaehyun(Jason)
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.1
    • /
    • pp.91-104
    • /
    • 2022
  • The operational design domain (ODD) of autonomous vehicles needs to be expanded on highways and urban roads in light of the substantial commercialization of Level 3 autonomous vehicles. Therefore, this study developed a specific infrastructure autonomous vehicle-based cooperative driving service to ensure the driving safety of autonomous vehicles on city roads. The traffic operation efficiency, safety evaluation, and core evaluation indices for each service were selected and analyzed to study the effect of each service. The result of the analysis confirmed that the traffic operation efficiency and safety of autonomous vehicles were improved through the V2X communication-based autonomous cooperative driving service. On the whole, the significance of this study is in deriving the effect of the autonomous cooperative driving service based on V2X communication on urban roads with interrupting traffic flow.

A Study on the Establishment and Operation of Autonomous Cooperative Road Traffic Security Institutions (자율협력 주행 도로교통 보안기관 설립 및 운영을 위한 방안 연구)

  • Mose Kim;Keecheon Kim
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.1
    • /
    • pp.208-218
    • /
    • 2023
  • Research on autonomous vehicles is being actively conducted, and the effort to commercialize them is underway in several countries. In Korea, platform construction projects are being carried out under the supervision of the Ministry of Land, Infrastructure, and Transport to achieve autonomous cooperative driving. To enable a flawless infrastructure, there is a requirement to build a safe security agency responsible for the secure operations of the entire process. However, there is no traffic ISAC in Korea that performs these roles. This paper analyzes related bills and acts of the other domestic security institutions currently in operation. Based on these results, we suggest appropriate directions to modify the current laws related to the C-ITS system. Finally, we propose a suitable plan to establish and operate a C-ITS ISAC.

Comparative Analysis of Driving Difficulty of Automated Vehicles in Therms of Road Infrastructure Using AHP Method (AHP 기법을 활용한 도로 인프라 측면에서의 자율주행차량 주행 난이도 비교분석)

  • Wee, Jeongran;Lee, Jongdeok
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.6
    • /
    • pp.214-227
    • /
    • 2021
  • The purpose of this study is to find the driving difficulty of automated vehicles in terms of road infrastructure operation. It was judged out of this study that the level of automated driving would be enhanced if the road situation recognition ability was advanced through the presentation of infrastructure information during the difficult driving situations. The difficulty evaluation index was divided into three stages, and a survey of experts and an AHP were conducted. The result of the AHP showed that the driving difficulty of the interrupted flow was much higher than that of the uninterrupted flow. The AHP results also showed that and the driving difficulty of unsignalized intersections and roundabouts under an interrupted flow was evaluated as the highest. The top six driving situations with high difficulty were also evaluated to occur under unsignalized intersections and roundabouts.

Evaluation Environment based on V2X Communication for Commercial Vehicle Cooperative Autonomous Driving (상용차 자율협력주행 플랫폼 평가를 위한 V2X 기반 평가환경 개발)

  • Han-gyun Jung;Seong-keun Jin;Jae-min Kwak
    • Journal of Advanced Navigation Technology
    • /
    • v.25 no.6
    • /
    • pp.450-455
    • /
    • 2021
  • In this paper, we introduce the contents of research on the establishment of an evaluation environment for autonomous cooperative driving platform for commercial vehicles based on V2X communication. For the evaluation of the autonomous cooperative driving platform based on V2X communication, various standards, standards, and guidelines for test evaluation should be developed and provided to the test subject, along with the establishment of test beds such as roads and V2X infrastructure that can apply various driving scenarios. do. In addition, based on this, various reference equipment and test equipment for actual test and evaluation should be developed. In this paper, various technologies, standards, equipment, and construction infrastructure developed to construct the evaluation environment for autonomous cooperative driving platform for commercial vehicles based on V2X communication are introduced.

Evaluation of LDM (Local Dynamic Map) Service Based on a Role in Cooperative Autonomous Driving with a Road (자율협력주행을 위한 역할 기반 동적정보 서비스 평가 방법)

  • Roh, Chang-Gyun;Kim, Hyoungsoo;Im, I-Jeong
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.1
    • /
    • pp.258-272
    • /
    • 2022
  • The technology implementation method was diversified into an 'autonomous cooperative driving' method to overcome the limitations of a stand-alone autonomous vehicle with vehicle sensor-based autonomous driving. The autonomous cooperative driving method involves exchanging information between roadside infrastructure and autonomous vehicles. In this process, the concept of dynamic information (LDM), a target of cooperation, was established. But, evaluation methods and standards for dynamic information have not been established. Therefore, this study, a dynamic information evaluation method based on information on pedestrians within the moving objects. In addition, autonomous cooperative driving was demonstrated, and dynamic information was also verified through the evaluation method. The significance of this study is that it established the dynamic information evaluation methodology for autonomous cooperative driving for the first time. Based on this, this study is expected to contribute to the application of safe autonomous cooperative driving technology to the field.