• Title/Summary/Keyword: 협동 로봇

Search Result 79, Processing Time 0.024 seconds

Cooperative Localization for Multiple Mobile Robots using Constraints Propagation Techniques on Intervals (제약 전파 기법을 적용한 다중 이동 로봇의 상호 협동 위치 추정)

  • Jo, Kyoung-Hwan;Jang, Choul-Soo;Lee, Ji-Hong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.3
    • /
    • pp.273-283
    • /
    • 2008
  • This article describes a cooperative localization technique of multiple robots sharing position information of each robot. In case of conventional methods such as EKF, they need to linearization process. Consequently, they are not able to guarantee that their result is range containing true value. In this paper, we propose a method to merge the data of redundant sensors based on constraints propagation techniques on intervals. The proposed method has a merit guaranteeing true value. Especially, we apply the constraints propagation technique fusing wheel encoders, a gyro, and an inexpensive GPS receiver. In addition, we utilize the correlation between GPS data in common workspace to improve localization performance for multiple robots. Simulation results show that proposed method improve considerably localization performance of multiple robots.

Cartesian Space Direct Teaching for Intuitive Teaching of a Sensorless Collaborative Robot (센서리스 협동로봇의 직관적인 교시를 위한 직교공간 직접교시)

  • Ahn, Kuk-Hyun;Song, Jae-Bok
    • The Journal of Korea Robotics Society
    • /
    • v.14 no.4
    • /
    • pp.311-317
    • /
    • 2019
  • Direct teaching is an essential function for collaborative robots for easy use by non-experts. For most robots, direct teaching is implemented only in joint space because the realization of Cartesian space direct teaching, in which the orientation of the end-effector is fixed while teaching, requires a measurement of the end-effector force. Thus, it is limited to the robots that are equipped with an expensive force/torque sensor. This study presents a Cartesian space direct teaching method for torque-controlled collaborative robots without either a force/torque sensor or joint torque sensors. The force exerted to the end-effector is obtained from the external torque which is estimated by the disturbance observer-based approach with the friction model. The friction model and the estimated end-effector force were experimentally verified using the robot equipped with joint torque sensors in order to compare the proposed sensorless approach with the method using torque sensors.

Research on the Application of Collaborative Robots to Support Depalletizing of Parcel (소포 하차업무 지원을 위한 협동 로봇 적용 연구)

  • Minhyuk Kim;Changuk Yu;Cheolgi Lee
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.3
    • /
    • pp.323-329
    • /
    • 2023
  • This paper discusses the application of collaborative robots to the de-palletizing in IMC (Inte-grated Mail Center). The domestic courier logistics market has grown rapidly, and logistics centers are reaching critical capacity. Therefore, digital innovation based on logistics automation is necessary, and this paper looks at the factors to be considered when introducing collaborative robots and improvement measures considering the characteristics of the de-palletizing task. The benefits of introducing collaborative robots include immediate efficiency and the goal of assisting workers. The paper reviews related research and cases of collaborative robots applied to logistics centers and summarizes the results of collaborative robots introduced to actual postal logistics centers. The paper also provides a comparison of collaborative robots and industrial robots and presents four candidates for collaborative robots for logistics work. The paper also considers suction grippers to be mounted on the arm to grasp the parcel. The paper concludes by discussing the introduction of collaborative robots in the post office logistics center.

A Study for drone and robot to monitor, sterilize and clean the air/water/soil pollution of smart livestock (스마트 축사의 공기/수질/토양 오염을 감시, 살균 및 청소할 드론과 로봇에 관한 연구)

  • Kim, Do-Yeup;Jung, Chan-Kyu
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2022.11a
    • /
    • pp.737-739
    • /
    • 2022
  • 본 논문은 스마트 축사의 공기/수질/토양 오염을 감시, 살균 및 청소할 드론과 로봇에 관한 연구이다. 서론에서는 서귀포시에서 최근에 개발되어 보급을 시작한 스마트 축사 시스템의 시범서비스와 바른전자의 사례를 통해서 시스템의 발전 방향과 문제점들을 분석한다. 본론에서는 차세대 스마트 축사의 전체 구성도와 서비스 구성표를 작성함으로써 연구개발의 방향을 모색하고, 인공지능, 빅데이터 분석, 드론, 로봇의 협동 방식의 스마트 축사를 구상하여 현존하는 스마트 축사 시스템의 문제점들을 보완하였다. 결론적으로, 본 논문은 차세대 스마트 축사의 환경오염과 자연생태계위협을 근원적으로 해결할 입체적인 감지정보처리 및 실시간으로 오염/전염병의 예방과 선제적 대응을 포함한, 축사에서 발생할 오염 및 전염병 사고/사건을 관할 당국에 신고하고 행정명령을 처리하는 ICT기반시설을 제안한다.

Development of Collaborative Robot Control Training Medium to Improve Worker Safety and Work Convenience Using Image Processing and Machine Learning-Based Hand Signal Recognition (작업자의 안전과 작업 편리성 향상을 위한 영상처리 및 기계학습 기반 수신호 인식 협동로봇 제어 교육 매체 개발)

  • Jin-heork Jung;Hun Jeong;Gyeong-geun Park;Gi-ju Lee;Hee-seok Park;Chae-hun An
    • Journal of Practical Engineering Education
    • /
    • v.14 no.3
    • /
    • pp.543-553
    • /
    • 2022
  • A collaborative robot(Cobot) is one of the production systems presented in the 4th industrial revolution and are systems that can maximize efficiency by combining the exquisite hand skills of workers and the ability of simple repetitive tasks of robots. Also, research on the development of an efficient interface method between the worker and the robot is continuously progressing along with the solution to the safety problem arising from the sharing of the workspace. In this study, a method for controlling the robot by recognizing the worker's hand signal was presented to enhance the convenience and concentration of the worker, and the safety of the worker was secured by introducing the concept of a safety zone. Various technologies such as robot control, PLC, image processing, machine learning, and ROS were used to implement this. In addition, the roles and interface methods of the proposed technologies were defined and presented for using educational media. Students can build and adjust the educational media system by linking the introduced various technologies. Therefore, there is an excellent advantage in recognizing the necessity of the technology required in the field and inducing in-depth learning about it. In addition, presenting a problem and then seeking a way to solve it on their own can lead to self-directed learning. Through this, students can learn key technologies of the 4th industrial revolution and improve their ability to solve various problems.

A Study on the Curriculum for Elementary and Middle School in Robot and Convergence Activity (초.중학교 로봇융합활동 교육과정에 관한 연구)

  • Park, Jung-Ho;Kim, Chul
    • Journal of The Korean Association of Information Education
    • /
    • v.18 no.2
    • /
    • pp.285-294
    • /
    • 2014
  • Recently, research using robots as a learning tool has increasingly been conducted in K-12 education area. It has been known that hands-on robots give positive educational effect not only on science and mathematics, but on STEAM activity, and help improve the abilities necessary in the 21 century, such as critical thinking, creativity, communication skills, and team work. Despite many research achievements, there is still few research on robot based curriculum to improve the instrumental application of robots in the primary and secondary education fields. In other words, there is a lack of studies of systematic educational contents, educational methods and educational evaluation to increase the instrumental application according to schools and class years. Therefore, this study analyzed domestic and foreign robot based curriculums and relevant cases to develop 'robot' related educational programs in primary school and middle school, suggested the achievement objectives in the robot area as a sub category of the computer science curriculum which will be revised, and proposed teaching-learning method and evaluation method.

A Study on Optimal Configuration for Mobile Manipulator Using Divide-and-Conquer Control (분할-획득 제어를 이용한 이동매니퓰레이터의 최적 자세에 관한 연구)

  • Kang Jin-Gu;Lee Kwan-Houng
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.6
    • /
    • pp.1395-1401
    • /
    • 2005
  • Mobile manipulator is a robot that has mobility and manipulability with the combination of the task robot and mobile robot. One of the most important feature of the Mobile Manipulator is redundant freedom. Using the redundant freedom, Mobile Manipulator can move various mode, perform dexterous motion. It can have the wider workspace and better performance in avoidance of singularity and obstacle than the fixed base structured robot. Cooperation control using the Mobile Manipulator improves the performance of the robot with redundant freedom in workspace. In this paper, configuration control of the Mobile Manipulator has been studied using Task Segment and TOMM(Task-Oriented Manipulability Measure). For verifying the proposed algorithm, we implemented a mobile manipulator, PURL-II, which is composed of a mobile robot with 3DOF and a task robot with SDOF.

Implementing Dynamic Obstacle Avoidance of Autonomous Multi-Mobile Robot System (자율 다개체 모바일 로봇 시스템의 동적 장애물 회피 구현)

  • Kim, Dong W.;Yi, Cho-Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.1
    • /
    • pp.11-19
    • /
    • 2013
  • For an autonomous multi-mobile robot system, path planning and collision avoidance are important functions used to perform a given task collaboratively and cooperatively. This study considers these important and challenging problems. The proposed approach is based on a potential field method and fuzzy logic system. First, a global path planner selects the paths of the robots that minimize the cost function from each robot to its own target using a potential field. Then, a local path planner modifies the path and orientation from the global planner to avoid collisions with static and dynamic obstacles using a fuzzy logic system. In this paper, each robot independently selects its destination and considers other robots as dynamic obstacles, and there is no need to predict the motion of obstacles. This process continues until the corresponding target of each robot is found. To test this method, an autonomous multi-mobile robot simulator (AMMRS) is developed, and both simulation-based and experimental results are given. The results show that the path planning and collision avoidance strategies are effective and useful for multi-mobile robot systems.

Modeling and Analysis of Cooperative Engagements with Manned-Unmanned Ground Combat Systems (무인 지상 전투 체계의 협동 교전 모델링 및 분석)

  • Han, Sang Woo;Pyun, Jai Jeong
    • Journal of the Korea Society for Simulation
    • /
    • v.29 no.2
    • /
    • pp.105-117
    • /
    • 2020
  • Analysis of combat effectiveness is required to consider the concept of tactical cooperative engagement between manned-unmanned weapon systems, in order to predict the required operational capabilities of future weapon systems that meets the concept of 'effect-based synchronized operations.' However, analytical methods such as mathematical and statistical models make it difficult to analyze the effects of complex systems under nonlinear warfare. In this paper, we propose a combat simulation model that can simulate the concept of cooperative engagement between manned-unmanned combat entities based on wireless communications. First, we model unmanned combat entities, e.g., unmanned ground vehicles and drones, and manned combat entities, e.g., combatants and artillery, considering the capabilities required by the future ground system. We also simulate tactical behavior in which all entities perform their mission while sharing battlefield situation information through wireless communications. Finally we explore the feasibility of the proposed model by analyzing combat effectiveness such as target acquisition rate, remote control success rate, reconnaissance lead time, survival rate, and enemy's loss rate under a small-unit armor reconnaissance scenario. The proposed model is expected to be used in war-game combat experiments as well as analysis of the effects of manned-unmanned ground weapons.

A Study on the Cooperative Control of Multiple Mobile Robots Using a Hierarchical Structure (계층적 구조에 의한 다중이동로봇의 협동제어에 관한 연구)

  • Park, Sung-Kyu;Lee, Kee-Seong
    • Proceedings of the KIEE Conference
    • /
    • 2001.11c
    • /
    • pp.95-98
    • /
    • 2001
  • A hierarchical structure for the cooperative control of multiple mobile robots using coordinates of objects obtained from vision system is proposed. The order-level perceives environments represented by workspace sets. The algorithm selects an object to be moved using an object discrimination part and determines the robot actions. The action-level generates a trajectory of each wheel velocity of robot. The simulation results show the effectiveness of the proposed algorithm.

  • PDF