• Title/Summary/Keyword: 혐기성 하수처리

Search Result 103, Processing Time 0.023 seconds

A Study on the Optical Internal Recycle Rate and MLSS Concentration of Membrane Coupled $A_2O$ Process for Wastewater Treatment (하수처리를 위한 막결합형 $A_2O$공정에서 최적 내부 순환율 및 MLSS 농도에 관한 연구)

  • Kim Kwan-Yeop;Kim Jin-Mo;Kim Hyung-Soo;Lee Sang-Bek;Park Eugene;Bae Sung-Soo
    • Membrane Journal
    • /
    • v.15 no.2
    • /
    • pp.114-120
    • /
    • 2005
  • The purpose of this study is to obtain practical information about membrane coupled $ A_2O$ system for muncipal wastewater treatment. A flat-plate microfiltration (MF) module with a pore size $0.25\;{\mu}m$ was submerged into the aeration basin and treated water was filtrated through the membrane by continuous suction with low pressure. The system was operated with synthetic wastewater to find operational parameters of internal recycle ratio and maximum MLSS showing best water quality and long-term stability. The internal recycle was defined as type 1 for aerobic to anoxic tank and type 2 for anoxic to anaerobic tank, respectively When the flux was maintained at $0.015\;m^3/m^2/hr$ (15 LMH) with 2Q type 1 internal recycle ratio, the optimal operational setting were 10 internal recycle ratio for type 2 and maximum MLSS of 11,000 mg/L among tested conditions. At this condition, removal efficiencies of BOD, CODcr, T-N and T-P showed $97.3\%,\;94.2\%,\;64.0\%,\;63.0\%$, respectively.

The study on increasing of biodegradability by pre-treatment of municipal wasted sludge in anaerobic digestion process (도시하수슬러지의 전처리에 따른 혐기성 소화공정의 생분해율 향상에 관한 연구)

  • Kang, Chang-Min
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.10 no.1
    • /
    • pp.87-95
    • /
    • 2002
  • The slow degradation rate of sludge in anaerobic digestion is due to rate-limiting step of sludge hydrolysis. To upgrading of sludge hydrolysis and biodegradabiliry, the pre-treatment had been carried out using acidlc (pH 1.5, 3, 4, 5) and alkaline (pH 9, 10, 13), thermal (50, 100, 150, $200^{\circ}C$), and ultrasonic treatment (400W, 20kHz, 15, 20, 25, 30, 40, 50, 60, 90min). In the best conditions of each treatment, the Soluble SCOD Ratio(%)of treated/untreated sample were increased 102% in acid (pH5), 986% in alkali (pH 13), 595% in thermal ($200^{\circ}C$) and 1123% in ultrasonic (35min) treatment. As the result, the ultrasonic treatment was most effective, followed by alkali, thermal, acid treatment. In the effects of total gas productivity in vial test, the thermal ($200^{\circ}C$) pre-treatment was the highest, followed by thermal ($150^{\circ}C$), ultrasonic (90min), alkaline (pH 9), and ultrasonic (50min). We compared untreated samples and the most efficient pre-treatment samples(at $200^{\circ}C$, for 30min) on gas productivity with changes of HRT in continuous experiments IN thermal treated samples were 2.5 times in SCOD, 2 times in soluble protein and 3.3 times high in soluble carbohydrate than untreated ones. In gas productivity, the thermal treated samples were average 2 times high than untreated ones. And HRT 7 days was most effective. followed by HRT 10, HRT 15 days. But The gas productiviry of HRT 2.5 days was less than untreated, the reason of low gas productivity was come from high organic acids accumulation within reactor.

  • PDF

Characteristics of Biological Nitrogen Removal for Low C/N Ratio Municipal Wastewater Using Methanol as an External Carbon Source in $A_2O$ Fluidized Media Process (유동여재 $A_2O$공정에서 외부탄소원으로 메탄올을 이용한 낮은 C/N비 하수의 생물학적 질소제거 특성)

  • Yoon, Cho-Hee;Kim, Min-Soo;Kim, Seung-Hyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.6
    • /
    • pp.687-692
    • /
    • 2006
  • This experiment was performed to evaluate the characteristics of BNR system performance, behavior of pollutants as organic and nitrogen at each basin and the effects of C/N ratio on biological nitrogen removal with methanol as an external carbon source for a low C/N ratio municipal wastewater. A lab-scale $A_2O$ system by employing the aerobic basin with the fluidized polyurethane media, which was $10{\sim}20$ mm rube type like a sponge, was used. The aerobic basin was hybrid type to be suspended and fixed biomass. The obtained results from this study were as follows; When no methanol was added, suspended biomass was 3 times more than that of the fluidized media in this system(total biomass 80 g). Biomass growed by an external carbon was firstly attached on media, and then suspended. $COD_{Cr}$ concentration for the effluent was a range of 13 to 29 mg/L regardless of pouring an external carbon. For nitrogen, the effluent concentration was $20.0{\sim}35.9mg/L$(removal efficiency; 18%) in case of no addition of an external carbon, but was $2.5{\sim}9.0mg/L$(removal efficiency ; $71{\sim}83%$) with addition of methanol. For the characteristics of pollutants removal, most of $COD_{Cr}$ were removed at the anaerobic basin when no external organic carbon was added, and were removed at the anoxic basin in case of adding external organic carbon but at the aerobic basin in case of adding excess external organic carbon. On the other hand, most TIN(total inorganic nitrogen) were removed at the anaerobic basin when no external organic carbon was added, but when an external organic carbon was added, they were removed at the anaerobic basin under unstable condition and at the anoxic basin under stable condition.

Effect of Heat Treatment of Sewage Sludge on Solubilization and Thermophilic Acid fermentation efficinecy (하수슬러지의 열처리에 의한 가용화효과 및 고온산발효의 분해효율에 미치는 영향 평가)

  • Park, Yongjin;Tsuno, Hiroshi;Hidaka, Taira;Kim, SeogKu
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.15 no.2
    • /
    • pp.89-97
    • /
    • 2007
  • In this study, thermalpretreatment was used to solubilize organic matter contained in sewage sludge before acid fermentation. By thermal pretreatment, solubilization of particulate CODcr, carbohydrate and protein increased. By thermal treatment at $120^{\circ}C$ for 30 minutes, CODcr solubilization efficiency of the primary sludge reached 8.3%. Meanwhile, for the secondary sludge, CODcr solubilization efficiency reached 16.5% because of high solubilization ratio of protein under the same pretreatment conditon. The results of anaerobic biodegradability test showed that both VFAs conversion ratio and hydrolysis rate of organic compounds in sewage sludge were improved by thermal pretreatment. Meanwhile, the optimum thermal pretreatment condition was varied with composition of organic compounds in sludge. In this study, the optimun thermal pretreatment condition of the primary sludge, containing high concentration of carbohydrate, was $80^{\circ}C$ for 30 minutes. Meanwhile, for the secondary sludge, mainly composed of protein, the sludge treated at $120^{\circ}C$ for 30 minutes showed the effective organic removal and VFAs production.

  • PDF

Microbial Communities and Diversities in a Full-Scale Mesophilic Anaerobic Digester Treating Sewage Sludge (하수슬러지 처리 실규모 중온 혐기성 소화조 미생물 군집 및 다양성 조사)

  • Minjae Kim;Suin Park;Juyun Lee;Hyebin Lee;Seonmin Kang;Hyokwan Bae;Joonyeob Lee
    • Journal of Environmental Science International
    • /
    • v.31 no.12
    • /
    • pp.1051-1059
    • /
    • 2022
  • This study investigated microbial communities and their diversity in a full-scale mesophilic anaerobic digester treating sewage sludge. Influent sewage sludge and anaerobic digester samples collected from a wastewater treatment plant in Busan were analyzed using high-throughput sequencing. It was found that the microbial community structure and diversity in the anaerobic digester could be affected by inoculation effect with influent sewage sludge. Nevertheless, distinct microbial communities were identified as the dominant microbial communities in the anaerobic digester. Twelve genera were identified as abundant bacterial communities, which included several groups of syntrophic bacteria communities, such as Candidatus Cloacimonas, Cloacimonadaceae W5, Smithella, which are (potential) syntrophic-propionate-oxidizing bacteria and Mesotoga and Thermovigra, which are (potential) syntrophic-acetate-oxidizing bacteria. Lentimicrobium, the most abundant genus in the anaerobic digester, may contribute to the decomposition of carbohydrates and the production of volatile fatty acids during the anaerobic digestion of sewage sludge. Of the methanogens identified, Methanollinea, Candidatus Methanofastidiosum, Methanospirillum, and Methanoculleus were the dominant hydrogenotrophic methanogens, and Methanosaeta was the dominant aceticlastic methanogens. The findings may be used as a reference for developing microbial indicators to evaluate the process stability and process efficiency of the anaerobic digestion of sewage sludge.

The Effect of Pre-treatment on the Anaerobic Digestion of waste Activated Sludge (하수슬러지의 혐기적 소화효율 향상을 위한 전처리 효과)

  • Kang, Chang-Min;Kim, Bong-Keun;Kim, In-Su;Kim, Byung-Tae
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.9 no.1
    • /
    • pp.90-98
    • /
    • 2001
  • The slow degradation rate of sewage sludge in anaerobic digesters is due to the rate limiting step of sludge hydrolysis. Therefore, the pre-treatment process had been carried out using acidic(pH 1.5, 3, 4, 5) and alkaline(pH9, 10, 13), thermal(50, 100, 150, $200^{\circ}C$) and ultrasonic treatment(400W, 20kHz, 15, 20, 25, 30, 35, 40, 50, 60min). In the best conditions of each treatment, the SCOD ratio(%) of treated/untreared samples were increased 102% in acid(pH5), 986% in alkali(pH13), 959% in thermal($200^{\circ}C$) and 1123% in ultrasonic(35min) treatment. As the result, the ultrasonic treatment was most effective, followed by alkali, thermal, acidic treatment. In the effects of total gas productivity, the thermal($200^{\circ}C$) pretreatment was the highest, followed by thermal($150^{\circ}C$), ultrasonic(90min), alkaline(pH9) and ultrasonic(50min).

  • PDF

Waste Activated Sludge Digestion with Thermophilic Attached Films (친열성(親熱性) 생물막공법(生物膜工法)을 이용(利用)한 폐활성(廢活性) 슬러지의 혐기성(嫌氣性) 소화(消化))

  • Han, Ung Jun;Kabribk, R.M.;Jewell, W.J.
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.5 no.4
    • /
    • pp.31-44
    • /
    • 1985
  • The application of anaerobic attached microbial films in the expanded bed process has recently been examined at high temperatures ($55^{\circ}C$) and with particulate matter. Extrapolation of the kinetics suggested that waste activated sludge (WAS) could be efficiently digested at hydraulic retention times as short as six hours in the expanded bed process. This would represent a 99 percent digester reactor volume reduction and would introduce interesting solids management alternatives if such a high rate process were developed. This paper presents a summary of a 1.5 year study of the feasibility of such a process. Three continuously fed $55^{\circ}C$ laboratory reactor systems were used to define the kinetics and the site of reactions-control completely mixed reactors were compared to the expanded beds (AAFEB) with and without a hydrolysis unit preceding the attached film unit. Well defined laboratory-generated WAS was compared to actual WAS from a domestic sewage treatment facility. Sixty percent of the biodegradable organics were converted in an AAFEB at a 15-hour hydraulic retention time without hydrolysis, whereas greater than 95 perccent of the biodegradable organics were stabilized in a two-stage system consisting of a 3-day HRT hydrolysis reactor followed by a 15-hour HRT AAFEB. The limitations of this high rate process and its potential application are discussed.

  • PDF

Determination of Major Reduced Sulfur Gases Emitted from Wastes Stored in Environmental Facility Using GC/FPD (GC/FPD를 이용한 환경기초시설 폐기물의 대기중 황계열 악취물질 배출특성에 관한 연구)

  • Lee, Taeyoon;Lee, Jeakeun;Lee, Junki
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.2
    • /
    • pp.37-43
    • /
    • 2009
  • With the economic development of Korea, sewage treatment facilities and waste food treatment facilities have been steadily increased. These facilities have positive effects such as the conservation of the water resources quality and waste food recycling while they also affect the neighborhood life with severe odor problems. Therefore, it was first collected sludge samples from 5 sewage treatment facilities and 5 waste food treatment facilities where the amounts of waste produced from above sites are relatively immense in Busan and estimate the $H_2S$ emission rates. Then it was selected 1 sample which has the highest emission rate of $H_2S$. Using flux chamber and GC/FPD analyses, it was tried to quantify the emitted amount of sulfonic gas concentration under anoxic condition. The sludge sample obtained from Noksan sewage treatment facility has the highest emission rate of $H_2S$. This sample contained 156.18 mg/kg $H_2S$. The odor compounds were analyzed using GC/FPD and the concentrations were converted to odor quotient. Among odor compounds the ratio of $CH_3SH$ (methylmercaptan) for the total odor quotient was 47.3% and considered to be the main odor compound in the sample.

  • PDF

Physico-Chemical Characteristics of Sewage Sludge under Electron Beam Irradiation (전자선으로 처리한 하수슬러지의 특성연구)

  • Shin, Kyung-sook;Kang, Ho;Bang, Ky-youn
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.7
    • /
    • pp.1225-1232
    • /
    • 2000
  • This study was carried out to define the effect of electron beam irradiation on the physico-chemical characteristics of sewage sludges. The experimental evidence showed that both pH and alkalinity of irradiated sludge were generally increased as the dose of irradiation increased. It was found that the soluble protein concentration (SPC) and soluble chemical oxygen demand (SCOD) from the sludge right after electron beam irradiation at 3kGy(kilo-joule/kg) increased 2.2 times and 10 times respectively more than those sludges without electron beam treatment. This highly solubilized organics could be resulted in a good soluble substrate for the subsequent anaerobic digestion process. The specific resistance of filtration (SRF) tests showed that sludge dewaterability under electron beam irradiation at 6kGy was found to be 8.8 times higher than that of unirradiated sludge. The sludge dewaterability seemed to be directly related to the dosage of electron beam irradiation up to 10kGy. However, the efficiency of sludge dewaterability tended to be smaller with higher applied irradiation dose. In comparing treatments by different inorganic chemical conditioner with irradiated and unirradiated sludges, it appeared that the dewaterability with irradiated sludge was approximately 4-10 times better that that of unirradiated sludge. Even electron beam treatment itself could replace the result from the sludge conditioned with inorganic chemical coagulants.

  • PDF

Development of Digestion Gas Production and Dewatering Cake Management in WWTP by Using Data Mining Technology (데이터 마이닝 기법을 활용한 하수처리장 소화가스 예측 및 탈수 케이크 관리 기법 개발)

  • Kim, Dongkwan;Kim, Hyosoo;Kim, Yejin;Kim, Minsoo;Piao, Wenhua;Kim, Changwon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.1
    • /
    • pp.1-6
    • /
    • 2015
  • The purpose of this study is to suggest the effective operation method by developing prediction model for the gas production rate, an indicator of the effectiveness of anaerobic digestion tank, using data mining. At the result, gas production estimate model is developed by using ANN within 10% error. It is expected to help operation of anaerobic digestion by suggesting selected parameter. Meanwhile case based reasoning is applied to develop dewatering cake management technology. Case based reasoning uses the most similar examples of past when a new problem occurs, therefore in this study, management measures are developed that proposes dewatering cake minimization with the minimum change by applying the case based reasoning to sludge disposal process.