• Title/Summary/Keyword: 현수부

Search Result 317, Processing Time 0.027 seconds

A New Early Maturing Rice Cultivar with High Quality and Good Taste, 'Geumyeong' (중산간지 적응 조숙 고식미 벼 신품종 '금영(金穎)')

  • Choung, Jin-Il;Park, Hyun-Su;Kang, Jong-Rae;Nam, Min-Hee;Kwak, Do-Yeon;Kim, Jeong-Il;Song, You-Chun;Yeo, Un-Sang;Shin, Mun-Sik;Lee, Jong-Hee;Kim, Dae-Sik;Park, No-Bong;Park, Dong-Soo;Yi, Gi-Hwan;Cho, Jun-Hyeon;Kim, Chun-Song;Kang, Hang-Won;Ko, Jae-Kwon;Ahn, Jin-Gon;Kim, Jung-Gon;Hwang, Heung-Gu
    • Korean Journal of Breeding Science
    • /
    • v.42 no.3
    • /
    • pp.272-275
    • /
    • 2010
  • 'Geumyoung' is a new early maturing rice cultivar developed from the cross between Sambaegbyeo and Iksan423/Sangju22 at Sangju Substation, NICS, RDA, Korea in 2009. It needs about 116 days from seedling to harvest in mid-mountainous areas. This cultivar has about 72 cm long culm and 19 cm long panicle, which are similar to Odaebyeo. It has higher panicle number per plant, medium to small grains and sometimes has a few awned spikelets. It shows tolerance to cold and resistance to blast but is susceptible to bacterial blight, virus diseases, and insects and pests. Milled rice of 'Geumyoeng' is translucent with non-glutinous endosperm and medium short grain. It has about 18.0% amylose and 6.6% protein content with good palatability of cooked rice. The milled rice yield of this cultivar was 5.53 MT/ha under standard fertilizer level of ordinary transplanting cultivation. 'Geumyong' would be adaptable for ordinary transplanting cultivation in the northern plains, and northern and southern mid-mountainous areas of South Korea.

Application of LRBs for Reduction of Wind-Induced Responses of Coupled Shear Wall Structures (전단벽 구조물의 풍응답 저감을 위한 LRB의 적용)

  • Park, Yong-Koo;Kim, Hyun-Su;Ko, Hyun;Kim, Min-Gyun;Lee, Dong-Guen
    • Journal of Korean Association for Spatial Structures
    • /
    • v.11 no.1
    • /
    • pp.47-56
    • /
    • 2011
  • In general, shear walls are employed as lateral resistance system. Most of shear wall structures require openings in shear walls and thus shear walls are linked by floor slabs or coupling beams resulting in the coupled shear wall structures. In this study, an LRB (lead rubber bearing) was introduced in the middle of the coupling beam of the coupled shear wall structures and the wind-induced response reduction effect of this system was investigated. In order to evaluate the control performance of the proposed method, 20- and 30-story building structures were used as example structures and boundary nonlinear time history analyses have been performed using artificial wind excitation. Japanese vibration evaluation criteria was employed to evaluate whether the proposed system could improve the serviceability of the tall coupled shear wall structures under wind excitation. Based on analytical results, it has been shown that the proposed method that connects shear walls with LRBs can improve the wind-induced response control effect.

Geochemical characteristics of Ogcheon granite in Ogcheon area (옥천화강암의 지구화학적 특성)

  • 윤현수;김대업;박석환
    • The Journal of the Petrological Society of Korea
    • /
    • v.8 no.2
    • /
    • pp.81-91
    • /
    • 1999
  • The area of the study is located in Ogcheon district, middle part of Ogcheon Fold Belt. The area is covered by metasedimentary rocks of Ogcheon Supergroup at northern, eastern and southern part. Jurassic Ogcheon granite which intruded into Ogcheon Supergroup at central part, was intruded by Cretaceous quartz porphyry at western part. The granite consists of quartz, plagioclase, alkali feldspar, biotite, sphene, apatite, epidote, opaque and so on. It is generally characterized by grey to light grey, medium-grained, mafic enclave and partly weak foliation. In terms of geochmical compositions, the granite is felsic, peraluminous, subalkaline and calc-alkaline, and it was differentiated from single granitic magma. It shows parallel LREE enrichment and HREE depletion patterns with 0.84 Eu negative anomaly, which has REE variation trend and anomaly value similar to Jurassic granites in Korea. From charactristics of petrology, mineralogy and geochmistry, it may be interpreted that the Ogcheon granite body was derived from melting of I-type crustal material related to syn-collisional tectonic setting and emplaced more or less rapidly into the Ogcheon Supergroup.

  • PDF

Design and Implementation of Time Synchronizer for Advanced ZigBee Systems (개선된 지그비 시스템을 위한 시간 동기부 설계 및 구현)

  • Hwang, Hyunsu;Jung, Yongcheol;Jung, Yunho
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.5
    • /
    • pp.453-461
    • /
    • 2016
  • Recently, with the growth of various sensor applications, the need of wireless communication systems which can support variable data rate is increasing. Therefore, advanced ZigBee (AZB) systems that support the various data rate under 250 kbps are proposed. However, the preamble structure for AZB systems causes the complexity increase of time synchronization circuits. In this paper, we propose preamble structure and time synchronization algorithm which can solve the problem of the complexity increase of time synchronization circuits. Implementation results show that the proposed time synchronizer for AZB systems include the logic slices of 6.92 k and, which are reduced at the rate of 62.3% compared with existing architecture.

An Experimental Study on Structural Behavior of Half Slab Reinforced by Truss Mesh (트러서메쉬 보강 하프 슬래브의 구조적 거동에 관한 실험적 연구)

  • Ko, Man-Young;Kim, Yong-Boo;Park, Hyun-Soo;Chung, Lan
    • Magazine of the Korea Concrete Institute
    • /
    • v.7 no.4
    • /
    • pp.119-128
    • /
    • 1995
  • This paper summarizes experimental results for studying feasibility and structural behavior of' a half slab which is getting popularity in recent building construction in favour of the savings in manpower, coats, and construction period. 17 specimens were tested to investigate and analyze the flexural strength of precast concrete slab, half slab, and half slab-wall joint. The primary variables of the testing program were: thickness of precast concrete slab, truss mesh shape, and type of loadings. Test results show that the flexural strength of precast concrete slab in reverse loading is lower than the design strength, but the flexural strength of precast concrete slab, half slab and half slab-wall joint in direct loading is higher than the design srength. No horizontal cracks were found in the connection between insitu concrete and precast concrete slab. The flexural strength of half slab and half slab-wall joint was the same as that of reinforced concrete members. This study concludes that there will not be any structural problem in using a half slab reinforced by truss mesh if props spacing of 2.0m-2.5m, cleanness, and rough finishing between precast concrete and insitu concrete slab are kept.

Modeling and Analysis of DC Based Buildong Power Structure (직류기반 소용량 건물 전력계 모델링 및 해석)

  • Baek, Jong-Bok;Seo, Gab-Su;Park, Chul-Woo;Bae, Hyun-Su;Cho, Bo-Hyung
    • Proceedings of the KIPE Conference
    • /
    • 2010.07a
    • /
    • pp.238-239
    • /
    • 2010
  • 주거 상업용 건물에 있어 최근 TV, LED 조명, 컴퓨터, IT 기기들과 같은 직류를 사용하는 부하가 점차 증가함에 따라 기존의 교류 배전 기반의 건물 전력구조에서 에너지절감을 위한 하나의 방안으로 직류기반의 건물 배전구조에 대한 도입에 대한 연구가 활발히 이뤄지고 있다. 또한 직류 형태의 전원인 태양광 발전, 연료전지 등의 신재생 에너지와 가정 및 전기자동차용 배터리의 등장은 직류 기반 전력구조가 가지는 강점을 더욱 부각시키고 있다. 직류 배전 시스템은 기존 교류 배전에서 직류부하를 위한 다중의 전력 변환 과정을 최소화함으로서 전원 및 부하에서 소모되는 에너지를 절감하여 전력시장 내 전체적인 탄소배출량 저감에 기여할 수 있을 것으로 고려되어지고 있다. 이는 직류배전 시스템의 에너지 저감 효용성 이외 기존 교류배전 대비 부하단 부품 수의 감소에 따른 신뢰성 향상 및 가격 저감, 무효전력 고려사항의 제거 등 많은 장점을 가지기 때문이다. 본 논문에서는 소용량 건물에 직류배전 구조가 도입될 경우 실현 가능성이 높은 대표적 직류 배전 구조들을 Functional Modeling 기법을 통해 모델링하며, 시뮬레이션을 통해 기존의 교류 배전 건물과 함께 각각의 전력계 구조에 대한 효율 및 장단점들을 정성적으로 비교하고, 구현에 필요한 고려사항들을 제시한다.

  • PDF

Investigation on Effects of Residual Stresses and Charpy V-Notch Impact Energy on Brittle Fractures of the Butt Weld between Close Check Valve and Piping, and of the Valve Body in Nuclear Power Plants (원전 역지 밸브/배관 맞대기 용접부와 밸브 몸체의 취성 파괴에 미치는 잔류응력 및 Charpy V-노치 충격에너지의 영향 고찰)

  • Kim, Jong-Sung;Kim, Hyun-Su
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.11 no.1
    • /
    • pp.69-73
    • /
    • 2015
  • The study investigated effects of residual stresses and Charpy impact energy on brittle fractures of the butt weld between the valve and the piping, and of the valve body in nuclear power plants via a linear elastic fracture mechanics approach in the ASME B&PV Code, Sec.XI and finite element analysis. Weld residual stress in a butt weld between close check valve and piping, and residual stress in the valve due to casting process were assumed to be proportional to yield strength of base metal. Operating stresses in the butt weld and the valve body were calculated using approximate engineering formulae and finite element analysis, respectively. Applied stress intensity factors were calculated by assuming postulated cracks with specific sizes and then by substituting the residual stresses and the operating stresses into engineering formulae presented in the ASME B&PV Code, Sec.III. Plane strain fracture toughness was derived by using a correlation between Charpy V-notch impact energy and fracture toughness. Structural integrity of the weld and the body against brittle fracture was assessed by using the applied stress intensity factors, plane strain fracture toughness and the linear elastic fracture mechanics approach. As a result, it was identified that the structural integrity was maintained with decreasing the residual stress levels and increasing the Charpy V-notch impact energy.

A Study on the Welds Characteristics of 200 Grade Stainless Steel for Application of Street Pole Material (가로등주 소재 적용을 위한 200계 스테인리스강의 용접부 특성 연구)

  • Lee, B.W.;Lee, D.K.;Kim, H.S.;Hong, S.H.
    • Journal of Power System Engineering
    • /
    • v.13 no.3
    • /
    • pp.33-39
    • /
    • 2009
  • The aim of this study is to analyze the welds characteristics of the 205 stainless steel pipe for application of street pole material. The welds corrosion behavior of STS 205 pipe in 0.1 N sulphuric acid solution and 5% NaCl solution at room temperature was studied using both salt spray test and potentiodynamic polarization experiment. The morphology and components of corrosion products on surface of STS 205 pipe welds were investigated using SEM/EDX. The tensile strength and yield strength values of STS 205 plate were 715 MPa and 369 MPa respectively. The microvickers hardness values of STS 205 pipe welds were slightly increased than that of STS 304 pipe welds. Corrosion current density($I_{corr.}$) and critical current density($I_{crit.}$) values of STS 205 pipe welds in 3.5% NaCl solution were $1.89{\times}10^{-6}$ $A/cm^2$ and $15.8{\times}10 ^{-6}$ $A/cm^2$. The corrosion resistance of SIS 205 pipe welds was similar to its STS 304 pipe welds. The STS 205 and 304 pipe welds passive films were chromium oxide. Especially, the STS 205 pipe welds showed good corrosion resistance in 0.1 N sulphuric acid. This is attributed to the forming of protective chromium oxide on the surface of STS 205 pipe welds.

  • PDF

A study on the factors influencing the segment lining design solved by beam-spring model in the shield tunnel (쉴드 터널 세그먼트 라이닝 설계에서 빔-스프링 구조 모델이 단면력에 미치는 영향)

  • Kim, Hong-moon;Kim, Hyun-su;Shim, Kyung-mi;Ahn, Sung-youll
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.2
    • /
    • pp.179-194
    • /
    • 2017
  • The segment lining design for shield tunnel is generally carried out by using the beam-spring model and the induced member forces from the model are strongly influenced by the components of the model such as imposed load, coefficient of subgrade reaction, location of segment joint and its stiffness. The structural models and stiffness of its connection part found used in abroad design cases is usually obtained as it is for the domestic design of segment of shield tunnel. Those models and stiffness in existing design cases are conventionally applied to a new tunnel design without any suitability review for the project. In this study, the application method of base components of the model such as the coefficient of subgrade reaction and modelling method to the segment lining design was suggested by carrying out the comparative study of the base elements for the member forces estimation of segment lining of shield tunnel.

Petrological characteristics on stone resources of granites in the Pocheon-Euijeongbu area (포천-의정부지역 화강암류 석재자원의 암석학적 특성연구)

  • 윤현수
    • The Journal of the Petrological Society of Korea
    • /
    • v.6 no.1
    • /
    • pp.34-44
    • /
    • 1997
  • The Jurassic granites, commercially called Yangu stone in the Pocheon-Euijeongbu area, have generally compact and coarse-grained textures, which could be classified into two types; grey granite(Gg) and light pink granite(Gp). Specific gravity, absorption ratio and prosity of Gg and Gp in physical property are 2.64 and 2.61, 0.32 % and 0.44 %, 0.86% and 1.13 %, respectively. These higher values of two latters of Gp than those of Gg are due to the more abundant microcracks in Gp. Compressive strength og Gg than those of Gg are due to more abundant microcracks in Gp. Compressive strength og Gg and Gp are 1,726 kg/cm2 and 1,717 kg/cm, respectively and bestrength has a positive proportion with Qz+Af+Pl(quartz+alkali feldspar+plagioclase) modes without trending with Bt+Ac(biotite+accessories). Tensile strength has the positive proportions with Qz+Af+Pl and Bt+Ac. While Bt+Ac has a negative trend with abrasive hardness, Qz+A+Pl shows a positive one. These may suggest Qz+Af+Pl mainly affects on strenghts potentional dimension stone than Gp.

  • PDF