• Title/Summary/Keyword: 현무암질 안산암

Search Result 36, Processing Time 0.023 seconds

A Study on Volcanic Stratigraphy and Fault of Ulleung-do, Korea (울릉도의 화산층서와 단층에 대한 연구)

  • Kim, Ki-Beom;Lee, Gi-Dong
    • The Journal of Engineering Geology
    • /
    • v.18 no.3
    • /
    • pp.321-330
    • /
    • 2008
  • This study, geological survey was carried out in order to study on the geology, geological structure and volcanic activity of the Ulleung-do volcano body. Ulleung-do is the volcano body of about 3,000m heights from the East Sea seabed. The geology of Ulleung-do is divided into basaltic agglomerate, trachytic agglomerate, trachyte, trachytic pumice and trachyandesite in ascending orders. The faults in caldera of Nari Basin came to make the reverse triangle style in compliance with sinking. The faults in circumference of Nari Basin are ranging with northeast-southwest direction and northwest-southeast direction. The Quaternary volcanic activities in the Ulleung-do are divided into 5 activity period. The engineering geologists and the applied geologists were not easy to apply because complicated geology of Ulleung-do. Therefore, this study supplied simple geology of Ulleung-do for them.

Study on the Geochemical Characteristics of the Mesozoic Volcanic Rocks in Da Hinggan Ling Area, Northeast China (중국 북동부 대흥안령 지역 중생대 화산암류에 대한 암석화학적 특성 연구)

  • Yun, Sung-Hyo;Won, Chong-Kwan;Lee, Moon-Won;Lin, Qiang
    • Journal of the Korean earth science society
    • /
    • v.21 no.1
    • /
    • pp.67-80
    • /
    • 2000
  • We studied petrological and geochemical characteristics of the Mesozoic volcanic rocks in the Da Hinggan Ling area northeast China, and discussed tectonic settings and origin of the Mesozoic volcanic rocks in northeast Asia. Volcanic rocks in Da Hinggan Ling area are composed of alkaline to subalkaline basalt-basaltic andesite-andesite-dacite-rhyolite, showing typical BAR(basalt-andesite-rhyolite) association. However, most of the volcanic rocks are basaltic and rhyolitic in composition, and andesitic rocks are relatively rare, which shows bimodal characteristics. Rb, Ba, Th and other incompatible element contents in the volcanic rocks are enriched, but the contents decrease with increasing the compatibility. REEs are fractionated and REE patterns of volcanic rocks are characterized by a high LILE/HFSE. On the tectonomagmatic discriminant diagram of Hf-Th-Nb, they fall into the fields for subduction-related destructive plate margin basalts and its differentiates. We suggest that the tectonomagmatic setting of Da Hinggan Ling area was located at the continental margin arc related with subduction environment during the Mesozoic time or may be derived from mantle plume contaminated geochemically from subducting slabs, although it is, at present within the Asia continent.

  • PDF

Petrochemical Study on the Cretaceous Volcanic Rocks in Kageo island, Korea (가거도(소흑산도)의 백악기 화산암류에 대한 암석화학적 연구)

  • 김진섭;백맹언;성종규
    • The Journal of the Petrological Society of Korea
    • /
    • v.6 no.1
    • /
    • pp.19-33
    • /
    • 1997
  • This study reports the results about the petrography and geochemical characteristics of 10 representative volacanic rocks. The Cretaceous volcanic rocks distributed in the vicinity of the Kageo island composed of andesitic rocks, dacitic welded tuff, and rhyolitic rocks in ascending order. Sedimentary rock is the basement in the study area covered with volcanic rocks. Andesitic rocks composed of pyroclastic volcanic breccia, lithic lapilli tuff and cryptocrystallin lava-flow. Most dacitic rocks are lapilli ash-flow welded tuff. Rhyolitic rocks consists of rhyolite tuff and rhyolite lava flow. Rhyolite tuff are lithic crystal ash-flow tuff and crystal vitric ash-flow tuff with somewhat accidental fragments of andesitic rocks, but dacitic rocks. The variation of major and trace element of the volcanic rocks show that contents of $Al_2O_3$, FeO, CaO, MgO, $TiO_2$ decrease with increasing of $SiO_2$. On the basis of Variation diagrams such as $Al_2O_3$ vs. CaO, Th/Yb vs. Ta/Yb, and $Ce_N/YB_N$ vs. $Ce_N$, these rocks represent mainly differentiation trend of calc-alkaline rock series. On the discriminant diagrams such as Ba/La and La/Th ratio, Rb vs. Y + Nb, the volcanic rocks in study area belongs to high-K Orogenic suites, with abundances of trace element and ternary diagram of K, Na, Ca. According to the tectonic discriminant diagram by Wood, these rocks falls into the diestructructive continental margin. K-Ar ages of whole rocks are from andesite to rhyolite $97.0{\pm}6.8~94.5{\pm}6.6,\68.9{\pm}4.8,\61.5{\pm}4.9~60.7{\pm}4.2$ Ma, repectively. Volcanic rocks in study area show well correlation to the Yucheon Group in terms of rock age dating and geochemcial data, and derived from andesitic calc-alkaline magma that undergone low pressure fractional crystallization dominated plagioclase at <30km.

  • PDF

Geology of the Kualkulun in the Middle Kalimantan, Indonesia: II. Mineralogy and Geochemistry (인도네시아 중부 칼리만탄 쿠알라쿠룬 지역의 지질: II. 광물 및 지구화학)

  • Kim In-Joon;Lee Gyoo Ho;Cho Deung-Lyong;Lee Seung-Ryeol;Lee Sa-Ro
    • Economic and Environmental Geology
    • /
    • v.37 no.5
    • /
    • pp.459-475
    • /
    • 2004
  • The geology of the Kualakulun area in Middle Kalimantan, Indonesia comprises Permian to Carboniferous Pinoh Metamorphic Rocks and Cretaceous Sepauk Plutonics of the Sunda Shield, late Eocene Tanjung Formation, Oligocene Malasan Volcanics, Oligocene to early Miocene Sintang Intrusives and Quaternary alluvium. Sepauk Plutonic rocks are classified as the calc-alkaline series and the S-type granite. Sintang Intrusive rocks are basic-intermediate and intermediate rocks, and consists of basalt, basaltic andesite, basaltic trachyandesite and trachyandesite. The Malasan Volcanics are characterized by intermediate dacitic pyroclasticl and minor lavas and belong to the subalkaline (calc-alkaline and tholeiitic) series. The whole-rock K-Ar ages of the fine-grained biotite granites and medium-grained granitoids were determined to be 100.5-106.5 Ma and 91.9-102.6 Ma, respectively. The whole-rock K-Ar age of the diorite is 89.1 Ma. K-Ar ages of the Malasan Volcanics and Shintang intrusives show 31.5-36.8 Ma and 24.6-34.5 Ma, respectively, and correspond to the Tertiary time.

Petrological Study on the Cretaceous Volcanic Rocks in the southwest Ryeongnam Massif: (1) the Mt. Moonyu volcanic mass, Seungju-gun (영남육괴 남서부에 분포하는 백악기 화산암류에 대한 암석학적 연구: (1) 승주군 문유산 화산암복합체)

  • Kim, Young-La;Koh, Jeong-Seon;Lee, Jeong-Hyun;Yun, Sung-Hyo
    • The Journal of the Petrological Society of Korea
    • /
    • v.17 no.2
    • /
    • pp.57-82
    • /
    • 2008
  • The volcanic sequence of the late Cretaceous Moonyu volcanic mass which distributed in the southwestern part of Ryeongnam massif, can be divided into felsic pyroclastic rocks, andesite and andesitic pyroclastic rocks, rhyolite in ascending order. The earliest volcanic activity might commence with intermittent eruptions of felsic magma during deposition of volcaniclastic sediments. Explosive eruptions of felsic pyroclastic rocks began with ash-falls, to progressed through pumice-falls and transmitted with dacitic to rhyolitic ash-flows. Subsequent andesite and andesitic pyroclastic rocks were erupted and finally rhyolite was intruded as lava domes along the fractures near the center of volcanic mass. Petrochemical data show that these rocks are calc-alkaline series and have close petrotectonic affinities with subduction-related continental margin arc volcanic province. Major element compositions range from medium-K to high-K. Petrochemical variation within the volcanic sequence can be largely accounted for tractional crystallization processes with subordinate mixing. The most mafic rocks are basaltic andesite, but low MgO and Ni contents indicate they are fractionated by fractional crystallization from earlier primary mafic magma, which derived from less than 20% partial melting of ultramafic rocks in upper mantle wedge. Based on the stratigraphy, the early volcanic rocks are zoned from lower felsic to upper andesitic in composition. The compositional zonation of magma chamber from upper felsic to lower andesitic, is interpreted to have resulted from fractionation within the chamber and replenishment by an influx of new mafic magma from depth. Replenishment and mixing is based on observations of disequilibrium phenocrysts in volcanic rocks. REE patterns show slight enrichment of LREE with differentiation from andesite to rhyolite. Rhyolite in the final stage can be derived from calc-alkaline andesite magma by fractional crystallization, but it might have underwent crustal contamination during the fractional crystallization.

Tectonics of the south Shetland Islands and Geology of king George Island: A Review (남쉐틀랜드군도의 지체구조 및 킹죠지섬의 지질)

  • 이민성;박병권
    • 한국해양학회지
    • /
    • v.25 no.2
    • /
    • pp.74-83
    • /
    • 1990
  • The similarity in Mesozoic geology between the Antarctic Peninsula and South America indicates the possibility that they had situated along the same tectonics line before the separation of southwestern Gondwanaland. The igneous activity around the Antarctic Peninsula, including the South Shetland islands, can be correlated with the South American Cordillera Orogeny due to the subduction of Farallon/Phoenix plate until late Mesozoic. However igneous activity in Tertiary correlates with the tectonics movement accompanying the formations of Drake passage and Scotian sea. The south Shetland islands form a Jurassic-Quaternary miasmatic island arc on the sialic basement of schist and deformed sedimentary rocks. Forming of the South Shetland Islands arc began during the latest Jurassic or earliest Cretaceous from the southwestern part of the archipelago. The igneous activity migrated northeasterly and continued in most areas until late Tertiary. The entire arc-forming period, between late Jurassic and late tertiary times, was characterized by emplacement and eruption of magmas of intermediate between island-arc tholeiite and calc-alkaline types. However, Quaternary volcanic rocks show strong alkaline affinities which corresponds to the switch from compressional to intra: plate tensional tectonics. The rocks of late Cretaceous to Tertiary, mainly found in King George Island, consist of lava of basalt to andesite and intercalated pyroclastic rocks. Some of the volcanic rocks, which ofter called quartz-pyrite lodes'are severely altered and include much content of calcite,silica and pyrite.The stratographic succession of King George Island can be divided into two formation:Fields formation and Hennequin formation.The Fildes formation crops out at the west side of Admiralty Bay n King George Island,while the Hennequin formation at the east side of the bay.These two formtions are thought to be formed contempiranceously.The Fildes formation consists of altered olivine-basalt and basaltic andestie, whereas the Hennequin formation consists of fine-grained hypersthene-augite-andesite.Both formations interclate pyroclastic rocks.

  • PDF

Miocene Volcanic Rocks Over the Area of Chenonja-bong and Siru-bong, Jinhae (1): Petrography and Petrochemical Characteristics (진해 천자봉-시루봉 일원에 분포하는 마이오세 화산암 (1): 암석기재와 암석화학적 특징)

  • Ryoo, Sam-Hyung;Jeong, Yun-Gi;Lee, Sang-Won;Sung, Jong-Gyu;Ryoo, Chung-Ryul
    • The Journal of the Petrological Society of Korea
    • /
    • v.17 no.2
    • /
    • pp.108-131
    • /
    • 2008
  • The Miocene andesite and basalt intruded into and/or extruded on the Cretaceous volcanic and granitic rocks over the area of Chenjabong and Sirubong in the vicinity of Jinhae, southern part of Kyongsang basin. The K-Ar ages of the younger volcanic rocks are from 16 Ma (Sirubong andesite) to 10 Ma (Cheonjabong basalt), which indicate the Miocene volcanism in the outer part of the Tertiary basin in the Korean peninsula. The volcanics are divided into Chenjabong andesite, Cheonjabong basaltic andesite, Sirubong andesite and Cheonjabong basalt. The Cheonjabong andesite is composed of phenocrysts of clinopyroxene and plagioclase ($An_{60{\sim}64}$) and groundmass with lath-like plagioclase ($An_{76{\sim}84}$) and glass. The Cheonjabong basaltic andesite is composed of plagioclase phenocryst ($An_{60{\sim}64}$) with plagioclase lath ($An_{65}$) and glass in groundmass. The Sirubong andesite is only consisted of plagiocalse lath ($An_{64{\sim}68}$) and glass with absence of phonocryst. The Cheonjabong basalt shows typical porphyritic texture with phenocrysts of olivine ($Fo_{69-84}$) and clinopyroxene. The groundmass of the Cheonjabong basalt is composed of microphenocrysts of olivine, clinopyroxene and plagioclase ($An_{66{\sim}71}$) and plagioclase laths ($An_{57{\sim}65}$) showing pillotaxitic and intergranular texture. The Cheonjabong andesite, Cheonjabong basaltic andesite, Sirubong andesite are belong to calc-alkialine but the Cheonjabong basalt is alkaline basalt. By tectonic discrimination diagrams the parental magmas of the volcanic rocks have occurred boundary.

Phenocryst Composition of Mafic Volcanic Rocks in the Wangtian'e Volcano (망천아 화산 고철질 암석의 반정광물 조성 연구)

  • Yun, Sung-Hyo
    • The Journal of the Petrological Society of Korea
    • /
    • v.28 no.1
    • /
    • pp.15-24
    • /
    • 2019
  • There are beautiful scenery with columnar jointing at 15 valley of southern slope of the Wangtian'e volcano in Mt. Baekdu volcanic field. The compositions of phenocryst minerals which have porphyritic textures in mafic volcanic rocks of this area were carried out. The Wangtian'e volcano consists of Changbai basalt~trachybasalt (lower part) and Wangtian'e basaltic trachyandesite~trachyte~alkali rhyolite (upper part). This study is focused on the mafic rocks of the Changbai trachybsalt and the Wangtian'e basaltic trachyandesite. Main phenocrysts are feldspar, pyroxene and olivine. The major element compositions of the phenocrysts were analyzed using EPMA. Plagioclase phenocrysts of the Wangtian'e basaltic trachyandesite are located at the border of andesine and oligoclase ($An_{24.1{\sim}36.0}$) in the An-Ab-Or diagram, and those of the Changbai trachybasalt are labradorite ($An_{54.2{\sim}65.2}$). Pyroxene phenocrysts are augite. Olivine phenocrysts of the Changbai trachybsalt are crysolite ($Mg_{0.79-0.77}Fe_{0.21-0.23}$) and microphenocrysts in the groundmass are hyalosiderite ($Mg_{0.58-0.56}Fe_{0.42-0.44}$). Calculated crystallization temperature of olivine phenocrysts is $1196{\sim}1123^{\circ}C$, clinopyroxene is $1122{\sim}1112^{\circ}C$, phenocrysts and laths of plagioclases are $1118{\sim}1107^{\circ}C$ and $1091{\sim}1089^{\circ}C$, respectively. The temperatures suggests that the olivine phenocrysts, clinopyroxene, plagioclase phenocrysts, and plagioclase laths were crystallized in the magma chamber in sequence.

Multiple Magmas and Their Evolutions of the Cretaceous Volcanic Rocks in and around Mireukdo Island, Tongyeong (통영 미륵도 주변 백악기 화산암류의 복식 마그마와 그 진화)

  • Hwang, Sang Koo;Lee, So Jin;Ahn, Ung San;Song, Kyo-Young
    • The Journal of the Petrological Society of Korea
    • /
    • v.27 no.3
    • /
    • pp.121-138
    • /
    • 2018
  • We have examined the petrotectonic setting and magmatic evolution from petrochemical characteristics of major and trace elements for the Cretaceous volcanic rocks in and around the Mireukdo Island. The volcanic rocks, can be devided into Jusasan, Unmunsa, Yokji and Saryang subgroups on the ascending order, are classified as basalt, basaltic andesite, andesite, dacite and rhyolite on TAS diagram. Petrochemical data show that the rocks are calc-alkaline series, and suggest that erupted earlier medium-K series and later high-K series. The volcanic rocks provide a case in which the calc-alkaline magma are formed, not only from separate protoliths, but following separate paths from source to surface. Earlier and later subgroups take different paths to the surface respectively, and are emplaced in the shallow crust as a series of discrete magma chambers through the volcanic processes. After emplacement, each chamber evolves indepently through fractional crystallization with a little assimilation of wall rock. The volcanic rocks have close petrotectonic affinities with orogenic suite and subduction-related volcanic arc. The rhyolitic magma can be derived from calc-alkaline andesitic magma by fractional crystallization with crustal assimilation, which may be derived from a partial melt of peridotite in the upper mantle.

Geochemical Study on the Naturally Originating Fluorine Distributed in the Area of Yongyudo and Sammokdo, Incheon (인천 용유도와 삼목도 지역 내 분포하는 자연기원 불소에 대한 지구화학적 연구)

  • Lee, Jong-Hwan;Jeong, Jong-Ok;Kim, Kun-Ki;Lee, Sang-Woo;Kim, Soon-Oh
    • Economic and Environmental Geology
    • /
    • v.52 no.4
    • /
    • pp.275-290
    • /
    • 2019
  • Geochemical study was conducted to elucidate the origin of fluorine (F) distributed in the rocks within the four areas of Yongyudo and Sammokdo, Incheon, which have been used as the source area of land reclamation for the $3^{rd}$ and $4^{th}$ stage construction sites of the Incheon International Airport. The main geology of the study area is Triassic biotite granite. Fluorine is contained at high levels in biotite granite, mylonite, and dykes (andesite and, basaltic-andesite). Furthermore, the higher concentrations of fluorine in the biotite granite can be contributed to fluorite. The results of microscopic analyses reveal that the fluorite was mostly observed as small vienlets together with quartz. This features support that fluorite was naturally formed due to the secondary process of hydrothermal fluids. In addition, fluorine was investigated to be highly enriched in a large amount of mica within the veins. In the case of mylonite, a high levels of fluorine was contributed to a large amount of sericite. The sericites contained in the mylointe, differently to those of the biotite granite, filled the micro-fractures of quartz formed as a result of mylonitization and included small cataclastic quartz grains. This indicates that fluorine was naturally enriched due to the alteration of hydrothermal fluids filling fractured zones formed by mylonitization. Consequently, the results of petrological and mineralogical study confirm that the fluorine distributed in the rocks within the Yongyudo and Sammokdo originated naturally.