• Title/Summary/Keyword: 헬멧

Search Result 119, Processing Time 0.024 seconds

Study on Remedies of Convergence Design for Personalized Fire Helmets (개인 맞춤형 소방용 헬멧의 융합 디자인 방안 연구)

  • Ahn, Yong Jun;Kang, Myung Chang;Lee, Tae Gu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.5
    • /
    • pp.371-376
    • /
    • 2016
  • Safety related workers, such as firefighters, have to wear a protective helmet. The Development of Helmets for safety is in progress to promote the wearable device industry. Several accidents caused by negligence in recent days have raised public attention to safety. For this reason, the amount of national budget funding for the study of fire-fighting and smart safety helmets has increased. However, most previous studies have focused on safety, rather than the application of new technologies based on physical attributes, especially the characteristics of head shape and size, even though fire helmets play the critical role of protection from flames and external shocks etc. in an emergency. This paper will present the smart technologies and newly developed designs for safety helmets that are personalized for each firefighter, based on the characteristics of their head, and will help a rescue operation to be much more safe and efficient.

The Study on Air Force Pilot's Recognition about Cockpit Noise to Foster Aviation Safety by the Use of Active Noise Cancellation (ANC)

  • Kyungtaek Hwang;Gene Lee;Kyungeun Lee
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.31 no.1
    • /
    • pp.26-36
    • /
    • 2023
  • 공군 조종사들이 비행 중에 겪는 지속적이고 강도 높은 소음은 조종사의 생리적(physiological) 및 심리적(psychological) 상태에 부정적인 영향을 미칠 수 있다. 이는 조종사의 비행 능력(performance)에 부정적인 영향을 주게 되며 임무 완수 및 비행 안전을 저해시키는 치명적인 결과로 이어질 수 있다. 대한민국 공군은 조종사들의 청력 보호를 위해 수동 소음 감쇠(Passive Noise Cancellation, PNC) 및 능동 소음 감쇠(Active Noise Cancellation, ANC) 기술이 적용된 헤드셋 및 헬멧을 사용 중이다. 그러나, 소음 저감 기술이 조종사의 청력 보호, 비행 능력, 및 비행 안전에 미치는 효용성에 대한 공군 조종사의 인식은 아직 연구된 바가 없다. 따라서 본 연구는 소음과 관련된 이론적 배경을 고찰하였고, 이후 설문조사를 통해 공군 조종사들(n=154)의 조종석 내 소음 및 소음 감쇠 기술에 대한 인식을 분석하였다. 분석 결과, 능동 소음 감쇠(ANC) 기술이 적용된 헤드셋 및 헬멧의 사용은 소음이 조종사의 생리적 상태에 미치는 영향에는 유의미한 효과가 없지만(p=0.402), 심리적 상태에 미치는 영향은 유의미하게 감소시키는 것으로 나타났다(p<0.001). 따라서, 능동 소음 감쇠(ANC) 기술이 적용된 비행 헤드셋 및 헬멧 사용의 필요성을 강조하였고, 이를 통해 조종사의 비행 능력(performance) 저하 방지 및 비행 안전 증진에 기여하고자 한다.

Experimental study on the drag reduction of a helmet for paragliding (패러글라이딩 헬멧의 항력 감소에 관한 실험적 연구)

  • Hwang, Jongbin;Park, Jungmok;Song, Jinseok;Kim, Jooha
    • Journal of the Korean Society of Visualization
    • /
    • v.19 no.3
    • /
    • pp.46-53
    • /
    • 2021
  • In the present study, wind tunnel experiments were performed to reduce the drag of a paragliding helmet in the range of Reynolds numbers from 46,000 to 155,000. The drag force of the helmet model with dimples and deflectors installed was measured by varying the dimple depth and the slant angle of the deflector. The dimples were effective in reducing the drag at low Reynolds numbers, but no significant drag reduction was found in the Reynolds number range in which an actual paraglider flight takes place. On the other hand, the deflector installed tangentially to the side outline of the helmet showed an average drag reduction of 7% in the flight Reynolds number range of real paragliding. This was because the deflector shrunk the size of the wake region and moved the wake region downstream of the deflector.

To protect the safety of port welders Smart Welding Helmet (항만 용접 작업자의 안전을 지켜주는 스마트 용접 헬멧)

  • Yu-Ri Son;Yun-Jeong Shin;Ha-Yeon Lee;Sang-Jin Im;In-Soo Kim
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.11a
    • /
    • pp.1074-1075
    • /
    • 2023
  • 용접작업은 다양한 산업에서 이루어지는 중요한 작업인데 반해, 여러 가지 위험요소들로 인해 작업자의 건강에 위협을 가할 수 있다. 또한, 용접 작업자들을 효율적으로 관리할 수 있는 안전점검인력이 부족한 실정이다. 이에 본 논문은 항만 용접 작업자의 안전을 위한 스마트헬멧 제작과 연동 APP을 개발하여, 체계적으로 작업자의 건강을 관리하고 안전사고를 미연에 방지하는 데에 그 목적이 있다.

Design and Implementation of Smart LED Bicycle Helmet using Arduino (아두이노를 이용한 스마트 LED 자전거 헬멧의 설계 및 구현)

  • Ahn, Sung-Woo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.6
    • /
    • pp.1148-1153
    • /
    • 2016
  • The number of cyclists is on the steady growing for leisure and transportation with the increasing interest in health and environment. However, the number of cycling accidents is also increasing steadily due to the lack of safety awareness and regulations. Focusing on this issue, we propose and develop a smart LED bicycle helmet in order to reduce a risk of cycling accident. The main idea is to change status of the LED on the helmet based on the bicycle's movement and provide motion information of the bicycle for others. To control the LED lights on the helmet, we use the Arduino board which communicates with the LED module through serial connection. We decide motion information by using the values from acceleration and GPS sensors of the smartphone. To receive this information from the smartphone, the control board and the smartphone are connected by Bluetooth.

Noise Reduction of Anti-phase Shifting to Maximum Amplitude Response in a Helmet (최대 진폭 응답으로 역위상을 천이시킨 헬멧에서의 소음감쇠 기법)

  • 조병모
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.7
    • /
    • pp.13-20
    • /
    • 2001
  • The active noise cancellation system offers a better low frequency performance with a smaller and lighter system compared to a passive one. This paper presents an active noise control system capable of reducing the noise in a helmet after attenuating the external noise using the helmet as the passive noise reduction system, which consists of a controller for inverting and compensating the phase delay, a microphone for picking up the external noise, and a loudspeaker for radiating the acoustic anti-phase signal to reduce the external noise. In this paper, external noise can be reduced by noise controller by compensating the phase difference to be 180°in the frequency of maximun value in the amplitude response. The noise of the phase delay covered from 50°to 310°was reduced in this system and it is possible to obtain a noise reduction of up to approximately 20 dB at the ears in the enclosure.

  • PDF

Radiation Therapy Using M3 Wax Bolus in Patients with Malignant Scalp Tumors (악성 두피 종양(Scalp) 환자의 M3 Wax Bolus를 이용한 방사선치료)

  • Kwon, Da Eun;Hwang, Ji Hye;Park, In Seo;Yang, Jun Cheol;Kim, Su Jin;You, Ah Young;Won, Young Jinn;Kwon, Kyung Tae
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.31 no.1
    • /
    • pp.75-81
    • /
    • 2019
  • Purpose: Helmet type bolus for 3D printer is being manufactured because of the disadvantages of Bolus materials when photon beam is used for the treatment of scalp malignancy. However, PLA, which is a used material, has a higher density than a tissue equivalent material and inconveniences occur when the patient wears PLA. In this study, we try to treat malignant scalp tumors by using M3 wax helmet with 3D printer. Methods and materials: For the modeling of the helmet type M3 wax, the head phantom was photographed by CT, which was acquired with a DICOM file. The part for helmet on the scalp was made with Helmet contour. The M3 Wax helmet was made by dissolving paraffin wax, mixing magnesium oxide and calcium carbonate, solidifying it in a PLA 3D helmet, and then eliminated PLA 3D Helmet of the surface. The treatment plan was based on Intensity-Modulated Radiation Therapy (IMRT) of 10 Portals, and the therapeutic dose was 200 cGy, using Analytical Anisotropic Algorithm (AAA) of Eclipse. Then, the dose was verified by using EBT3 film and Mosfet (Metal Oxide Semiconductor Field Effect Transistor: USA), and the IMRT plan was measured 3 times in 3 parts by reproducing the phantom of the head human model under the same condition with the CT simulation room. Results: The Hounsfield unit (HU) of the bolus measured by CT was $52{\pm}37.1$. The dose of TPS was 186.6 cGy, 193.2 cGy and 190.6 cGy at the M3 Wax bolus measurement points of A, B and C, and the dose measured three times at Mostet was $179.66{\pm}2.62cGy$, $184.33{\pm}1.24cGy$ and $195.33{\pm}1.69cGy$. And the error rates were -3.71 %, -4.59 %, and 2.48 %. The dose measured with EBT3 film was $182.00{\pm}1.63cGy$, $193.66{\pm}2.05cGy$ and $196{\pm}2.16cGy$. The error rates were -2.46 %, 0.23 % and 2.83 %. Conclusions: The thickness of the M3 wax bolus was 2 cm, which could help the treatment plan to be established by easily lowering the dose of the brain part. The maximum error rate of the scalp surface dose was measured within 5 % and generally within 3 %, even in the A, B, C measurements of dosimeters of EBT3 film and Mosfet in the treatment dose verification. The making period of M3 wax bolus is shorter, cheaper than that of 3D printer, can be reused and is very useful for the treatment of scalp malignancies as human tissue equivalent material. Therefore, we think that the use of casting type M3 wax bolus, which will complement the making period and cost of high capacity Bolus and Compensator in 3D printer, will increase later.

모자 제작을 위한 여자 머리형태에 관한 연구

  • 안영실;서미아
    • Proceedings of the Costume Culture Conference
    • /
    • 2004.04a
    • /
    • pp.47-49
    • /
    • 2004
  • 최근 스포츠 레져산업의 발전으로 스포츠가 대중화됨에 따라 안전에 대한 문제가 높아지고 있으며, 각종 스포츠 경기시 발생되는 충격에 의한 보호의 기능과 경기력 향상을 위하여 밀차형 모자의 기능성과 적합성을 요구하고 있다. 특히 헬멧이나 특수용도의 모자는 적합도 문제가 더욱 중요하므로 머리 및 얼굴에 착용되는 산업제품 설계 시 이러한 부위들이 세밀하게 고려되어야 한다. (중략)

  • PDF

A Fundamental Study on Polymer/Metal Additive Method using a UV Laser for Consumer-oriented 3D Helmet Products (소비자 지향 3차원 헬멧제품 제작을 위한 UV레이저 기반의 폴리머/금속적층에 대한 기초연구)

  • Kang, Bo-Seok;Ahn, Dong-Gyu;Shin, Bo-Sung;Shin, Jong-Kuk
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.6
    • /
    • pp.89-94
    • /
    • 2016
  • Consumer orientation requires that companies understand consumer needs and produce products that meet their expectations. This study proposes a new additive method that creates a polymer/metal bonding layer and thus can lighten the weight of helmets to develop a consumer-oriented 3D printing helmet. The composite solution is experimentally prepared with copper formate and a photopolymer resin. Stereolithography apparatus and photothermal reactions are introduced to fabricate an adhesive hybrid layer of copper metal and polymer. A UV pulse laser with a 355 nm wavelength was installed to simplify this process. Resistance, adhesion, and accuracy were investigated to evaluate the properties of the layer produced.