• Title/Summary/Keyword: 헤드누설

Search Result 16, Processing Time 0.02 seconds

고리2호기 원자로 헤드관통관 응력해석

  • 박종일;최광희;홍승열
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05d
    • /
    • pp.176-181
    • /
    • 1996
  • 원자로 용기 헤드부위의 관통관은 재질이 Inconel-600이며, 현재 세계각국에서도 원자로 헤드 관통관의 균열이 일부 발견되어 우리나라에서도 관심이 되고 있다. 국내 원전 헤드관 통관 수량도 고리 1,2호기의 경우 40개, 고리3,4호기(영광1,2) 61개, 울진 57개로서 관통관의 균열결함이 존재할 수 있다. 만약 균열이 성장하여 파손 되었을 시 원자로 냉각재 누설등 발전소 안전에 큰영향을 미치므로 균열의 원인으로 알려진 용접부위 잔류응력 및 발전소 정상운전 상태에서의 응력을 해석하였다.

  • PDF

Magnetic Flux Leakage Method based Local Fault Detection for Inspection of Wire Rope (승강기 와이어로프 진단을 위한 누설자속기법 기반 국부손상 진단)

  • Kim, Ju-Won;Park, Ju-Young;Park, Seunghee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.4
    • /
    • pp.417-423
    • /
    • 2015
  • In this study, Magnetic Flux Leakage(MFL)-based inspection system was applied to detect the local fault of wire rope. To verify the feasibility of the proposed damage detection technique, an 4-channel MFL sensor head prototype was designed and fabricated. A wire rope with several types of cross-sectional damages were fabricated and scanned by the MFL sensor head to measure the magnetic flux density of the wire rope specimen. To interpret the condition of the wire rope, magnetic flux signals were used to determine the locations of the flaws. To improve the resolution of signal, the instantaneous variation value of magnetic flux was utilized. Measured signals from the damaged specimen were compared with thresholds set for objective decision making. Finally, the results were compared with information on actual inflicted damages to confirm the accuracy and effectiveness of the proposed cable monitoring method.

Imaging Magnetic Flux Leakage based Steel Plate Damage for Steel Structure Diagnosis (강구조물 진단을 위한 누설자속 기반 강판 손상의 이미지화)

  • Kim, Hansun;Kim, Ju-Won;Yu, Byoungjoon;Kim, Wonkyu;Park, Seunghee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.7
    • /
    • pp.129-136
    • /
    • 2019
  • In this study, the magnetic flux leakage technique was applied to diagnose steel plate damage, imaging technique was applied through those signals. Steel plate specimens with different thicknesses were prepared for the imaging the magnetic flux leakage signal, and 6 different depths of damage were artificially processed at the same locations on each specimen. The sensor head consist hall sensor and magnetization yoke was fabricated to magnetize the steel plate specimen and measure the magnetic flux leakage signal. In order to remove the noise and increase the resolution of the image in the signal collected from the hall sensor, various of signal processing was performed. P-P value was analyzed for each channel to analyze the magnetic flux leakage signals measured from each damaged part. Based on the above processed signals and analysis, it was converted into heatmap image. Through this, it was possible to identify the damage on the steel plate at glance by imaging magnetic flux leakage signal.

Local Fault Detection Technique for Steel Cable using Multi-Channel Magnetic Flux Leakage Sensor (다채널 자속누설 센서를 이용한 강케이블의 국부 단면손상 검색)

  • Park, Seunghee;Kim, Ju-Won;Lee, Changgil;Lee, Jongjae;Gil, Heung-Bae
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.4
    • /
    • pp.287-292
    • /
    • 2012
  • In this study, Multi-Channel Magnetic Flux Leakage(MFL) sensor - based inspection system was applied to monitor the condition of cables. This inspection system measures magnetic flux to detect the local faults(LF) of steel cable. To verify the feasibility of the proposed damage detection technique, an 8-channel MFL sensor head prototype was designed and fabricated. A steel cable bunch specimen with several types of damage was fabricated and scanned by the MFL sensor head to measure the magnetic flux density of the specimen. To interpret the condition of the steel cable, magnetic flux signals were used to determine the locations of the flaws and the level of damage. Measured signals from the damaged specimen were compared with thresholds set for objective decision making. In addition, the magnetic flux density values measured from every channel were summed to focus on the detection of axial location. And, sum of flux density were displayed with threshold. Finally, the results were compared with information on actual inflicted damages to confirm the accuracy and effectiveness of the proposed cable monitoring method.

Leakage Analysis of the Exhaust Gas for the Engine Exhaust Manifold (엔진 배기매니폴드의 배기가스 누설 해석)

  • Choi, Bok-Lok
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.3
    • /
    • pp.160-165
    • /
    • 2007
  • Exhaust manifold is generally subjected to thermal cycle loadings ; at hot condition, large compressive plastic deformations are generated, and at cold condition, tensile stresses are remained in highly deformed critical zones. These phenomena originate from that thermal expansions of the runners are restricted by inlet flange connected to the cylinder head, because the former is less stiff than the latter and, the temperature of the inlet flange is lower than that of the runners. Therefore, due to the repetitions of thermal deformation, leakage problems could be occur between inlet flange and cylinder head. In this study, we obtained pressure distributions along gasket bead lines from the finite element analysis and compared to the test results. It shows a good agreement between numerical and experimental results.

Field Application of a Cable NDT System for Cable-Stayed Bridge Using MFL Sensors Integrated Climbing Robot (누설자속센서를 탑재시킨 이동로봇을 이용한 사장교 케이블 비파괴검사 시스템의 현장 적용)

  • Kim, Ju-Won;Choi, Jun-Sung;Lee, Eun-Chan;Park, Seung-Hee
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.34 no.1
    • /
    • pp.60-67
    • /
    • 2014
  • In this study, an automated cable non-destructive testing(NDT) system was developed to monitor the steel cables that are a core component of cable-stayed bridges. The magnetic flux leakage(MFL) method, which is suitable for ferromagnetic continuum structures and has been verified in previous studies, was applied to the cable inspection. A multi-channel MFL sensor head was fabricated using hall sensors and permanent magnets. A wheel-based cable climbing robot was fabricated to improve the accessibility to the cables, and operating software was developed to monitor the MFL-based NDT research and control the climbing robot. Remote data transmission and robot control were realized by applying wireless LAN communication. Finally, the developed element techniques were integrated into an MFL-based cable NDT system, and the field applicability of this system was verified through a field test at Seohae Bridge, which is a typical cable-stayed bridge currently in operation.

Analysis of Magnetic Flux Leakage based Local Damage Detection Sensitivity According to Thickness of Steel Plate (누설자속 기반 강판 두께별 국부 손상 진단 감도 분석)

  • Kim, Ju-Won;Yu, Byoungjoon;Park, Sehwan;Park, Seunghee
    • Journal of Korean Society of Disaster and Security
    • /
    • v.11 no.2
    • /
    • pp.53-60
    • /
    • 2018
  • To diagnosis the local damages of the steel plates, magnetic flux leakage (MFL) method that is known as a adaptable non-destructive evaluation (NDE) method for continuum ferromagnetic members was applied in this study. To analysis the sensitivity according to thickness of steel plate in MFL method based damage diagnosis, several steel plate specimens that have different thickness were prepared and three depths of artificial damage were formed to the each specimens. To measured the MFL signals, a MFL sensor head that have a constant magnetization intensity were fabricated using a hall sensor and a magnetization yoke using permanent magnets. The magnetic flux signals obtained by using MFL sensor head were improved through a series of signal processing methods. The capability of local damage detection was verified from the measured MFL signals from each damage points. And, the peak to peak values (P-P value) extracted from the detected MFL signals from each thickness specimen were compared each other to analysis the MFL based local damage detection sensitivity according to the thickness of steel plate.

Effect of Normal Operating Condition Analysis Method for Weld Residual Stress of CRDM Nozzle in Reactor Pressure Vessel (원전 정상가동조건 적용 방식이 원자로 압력용기 상부헤드 관통 노즐의 용접 잔류응력에 미치는 영향)

  • Nam, Hyun Suk;Bae, Hong Yeol;Oh, Chang Young;Kim, Ji Soo;Kim, Yun Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.9
    • /
    • pp.1159-1168
    • /
    • 2013
  • In pressurized water nuclear reactors (PWRs), the reactor pressure vessel (RPV) upper head contains penetration nozzles that use a control rod drive mechanism (CRDM). The penetration nozzle uses J-groove weld geometry. Recently, the occurrence of cracking in alloy 600 CRDM penetration nozzle has increased. This is attributable to primary water stress corrosion cracking (PWSCC). PWSCC is known to be susceptible to the welding residual stress and operational stress. Generally, the tensile residual stress is the main factor contributing to crack growth. Therefore, this study investigates the effect on weld residual stress through different analysis methods for normal operating conditions using finite element analysis. In addition, this study also considers the effect of repeated normal operating condition cycles on the weld residual stress. Based on the analysis result, this paper presents a normal operating condition analysis method.

Study for Failure Examples Involved to Spark Plug Assembling Part Damage, Timing Maladjustment and Alien Substance Insertion in Intake Valve Part on LPG Vehicle Engine (자동차용 LPG 엔진의 점화플러그 장착 부 손상, 점화시기 조정불량, 흡입밸브 부 이물질유입 고장사례 연구)

  • Lee, IL Kwon;Kook, Chang Ho;Ham, Sung Hoon;Kim, Sung Mo;Hwang, Han Sub;Jung, Dong Hwa;Moon, Hak Hoon;Lee, Jeong Ho
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.2
    • /
    • pp.22-27
    • /
    • 2021
  • This paper is a purpose to study the failure examples for LPG vehicle. The first example, the researcher certified the incongruity phenomenon decreased engine power by ignition fire leakage because of spark plug threaded part damage assembling in cylinder head. The second example, the timing mark that accurately adjusting the camshaft and crankshaft position were twisted about 0.5 block each other. Finally, the researcher seeked the disharmony phenomenon as it couldn't set ignition timing. The third example, the researcher knew the failure phenomenon by interrupted the closing period for intake valve moving with air flow in the number 3 port of cylinder head as the foreign substance in cylinder head didn't remove. Therefore, the manager of a car has to thorough going inspect and the manufacture of a car must remove the cause of failure with quality assurance.

A Study on the Non-Contact Detection Technique of Defects Using AC Current - The Influence of Frequency and lift-off - (교류전류를 이용한 비접촉결함탐상법에 관한 연구 - 주파수 lift-off의 영향 -)

  • Kim, Hoon;Na, Eu-Gyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.1
    • /
    • pp.53-58
    • /
    • 2002
  • New nondestructive inspection (NDI) technique to detect the defect in metal was developed in which an electromagnetic field is induced in a metal by AC current flowing in the magnetic coil and the leak magnetic-flux disturbed by defects is measured using a tape-recorder head with air gap. This technique can be applied in evaluating the location and sizing of surface defects in components of the ferromagnetic body by means of the non-contacting measurement. In this paper, we have applied this technique to the evaluation of two-dimensional surface cracks in ferromagnetic metal, and also investigated the influence of the various frequencies and lift-off. Defects were detected with maximum values in the distribution of voltage and it was found that the maximum values tend to increase with the defect depth. Although the maximum values for defects are affected by the frequency and lift-off, the depth of small defects can be estimated from the linear relationship between the depth and voltage rate$(V_0/V_{ave})$.