• 제목/요약/키워드: 허훈(許薰)

검색결과 355건 처리시간 0.063초

성형 효과를 고려한 차체 구조 부재의 충돌 특성 (Crashworthiness of an Auto-body Member with the Forming Effect)

  • 김기풍;송정한;허훈;김현섭;홍석길
    • 한국자동차공학회논문집
    • /
    • 제12권1호
    • /
    • pp.91-98
    • /
    • 2004
  • This paper is concerned with crash analysis for an auto-body member with the forming effect. Auto-body members such as a front frame assembly are fabricated with sheet metal forming processes that induce forming histories such as the plastic work hardening and non-uniform thickness distribution. Numerical simulation is carried out with LS-DYNA3D in order to identify the forming effect on the crashworthiness. The crash analysis of the front frame assembly with the forming effect leads to a different result from that without the forming effect. Crashworthiness such as the load-carrying capacity, the crash mode and the energy absorption are calculated to investigate and identify the forming effect. It is fully demonstrated that the design of auto-body members needs to consider the forming effect for accurate assessment of the load-carrying capacity and the deformation mechanism of the formed members.

차체용 고장력 강판의 동적 인장 특성 평가 (Dynamic Tensile Characteristics of the High Strength Steel Sheet for an Auto-body)

  • 김석봉;허훈;신철수;김효균
    • 한국자동차공학회논문집
    • /
    • 제15권1호
    • /
    • pp.171-176
    • /
    • 2007
  • An important challenging issue in the automotive industry is the light-weight, safe design and enhancement of crash response of an auto-body structures. These objectives lead to increasing adoption of high strength steel sheet for inner and outer auto-body members. This paper evaluates the dynamic tensile characteristics of high strength steel sheets, HS45R, TRIP60, DP60 and DP100, along the rolling direction and transverse direction. Static tensile tests were carried out at the strain rate of 0.003/sec using the static tensile machine (Instron 5583). Dynamic tensile tests were carried out at the range of strain rate from 0.1/sec to 200/sec using a high speed material testing machine developed. The tensile tests acquire stress-strain relation and strain rate sensitivity of each material. The experimental results show two important aspects for high strength steels: the flow stress increases as strain rate increases; the strain hardening decreases as the tensile stress increases. The experiments also produce interesting results that the elongation does not decrease even when the strain rate increases.

반응표면법을 이용한 차체 부재의 충돌성능 향상을 위한 설계 최적화 (Design Optimization of Auto-body Members for Crashworthiness Enhancement with the Response Surface Method)

  • 나승렬;송정한;허훈;김현섭
    • 한국자동차공학회논문집
    • /
    • 제13권4호
    • /
    • pp.81-89
    • /
    • 2005
  • The response surface method is the statistical method which can be applied to the non-sensitivity based optimization. The response surface which is constructed by the least square method contains only the polynomial terms so that the global maximum and minimum points are easily obtained. In this paper, this response surface method is utilized to optimize the crashworthiness of auto-body members. As the first step, the thickness of a simple circular tube is optimized to confirm the application of the response surface method to the crashworthiness. Optimization of the thickness on the front side member is, then, performed with the constructed response surface of the absorbed energy and deformation. Optimization results demonstrate that the absorbed energy and the deformation pattern of the front side member is improved in the viewpoint of enhancement of the crashworthiness.

PFN Marx 펄스전원공급장치 시험 (Test of PFN Marx Pulse Power Supply)

  • 박성수;허훈;김성철;김상희;김승환;박용정;;남상훈;신진우;소준호;장원
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 제38회 하계학술대회
    • /
    • pp.1447-1448
    • /
    • 2007
  • 고출력 펄스 전원으로 PFN Marx 펄스 전원공급장치를 설계 및 제작하였다. PFN Marx는 커패시터와 인덕터 그리고 스파크 갭과 전원을 공급하는 전원공급장치와 전류 인덕터로 구성하여 제작을 하였다. 여기에 사용하는 스파크 갭 스위치는 개스를 채우는 방식으로 개스의 압력을 조정하여 스위치의 스위칭 전압을 조정하여 준다. PFN Marx는 커패시터와 인덕터가 직병렬로 구성이 되며 펄스폭과 PFN의 임피던스를 결정하는 중요한 요소이다. PFN Marx 펄스 전원공급장치를 시뮬레이션 및 제작하여 시험을 하였다. 요구되는 사양은 전압 수십 kV, 펄스 폭수백 ns이다. 본 논문에서는 PFN Marx 펄스전원장치의 설계 및 시험에 대하여 고찰하고자 한다.

  • PDF

이차원 하이브리드 요소를 이용한 균열을 내포하는 용접점의 유한요소 파단해석 (Fracture Analysis of Spot-Welds with Edge Cracks using 2-D Hybrid Special Finite Element)

  • 송정한;양춘휘;허훈;김홍기;박성호
    • 소성∙가공
    • /
    • 제13권6호
    • /
    • pp.484-489
    • /
    • 2004
  • This paper employed a systematic analysis using a 2-D hybrid special finite element containing an edge crack in order to describe the fracture behavior of spot-welds in automotive structures. The 2-D hybrid special finite element is derived form a mixed formulation with a complex potential function with the description of the singularity of a stress field. The hybrid special finite element containing an edge crack can give a better description of its singularity with only one hybrid element surrounding one crack. The advantage of this special element is that it can greatly simplify the numerical modeling of the spot welds. Some numerical examples demonstrate the validity and versatility of the present analysis method. The lap-shear, lap-tension and angle-clip specimens are analyzed and some useful fracture parameters such as the stress intensity factor and the initial direction of crack growth are obtained simultaneously.

변형률속도 변화에 따른 INCONEL 718 초내열합금의 동적 물성특성 (Dynamic Material Characteristics of Superalloy INCONEL 718 with the Variation of Strain Rates)

  • 송정한;허훈
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.275-278
    • /
    • 2005
  • INCONEL 718, nickel based superalloy, has good formability, high strength, excellent corrosion resistance and mechanical properties at high temperature. Owing to theses attractive properties, it finds use in applications such as combustion system, turbine engines and nuclear reactors. In such applications, components are typically required to be tolerant of high stress impact loading. This may cause material degradation and lead to catastrophic failure during service operation. In order to design optimal structural parts made of INCONEL 718, accurate understanding of material's mechanical properties, dynamic behavior and fracture characteristic as a function of strain rates are required. This paper concerned with the dynamic material properties of the INCONEL 718 for the various strain rates. The dynamic response of the INCONEL 718 at intermediate strain rate is obtained from the high speed tensile test machine test and at the high strain rate is from the split Hopkinson pressure bar test. Based on the experimental results, the effects of strain rate on dynamic flow stress, work hardening characteristics, strain rate sensitivity and elongation to the failure are evaluated. Experimental results from both quasi-static and high strain rate up to the 5000/sec are interpolated in order to construct the Johnson-Cook model as the constitutive relation that should be applied to simulate and design the structural parts made of INCONEL 718.

  • PDF

Hydro-mechanical hole punching 공정의 유한요소 해석 (FE Analysis for hydro-mechanical Hole Punching Process)

  • 윤종헌;김승수;박훈재;최태훈;이혜진;허훈
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.159-162
    • /
    • 2005
  • The milli-components for electronic and medical device etc. have been manufactured by conventional process. Forming and machining process for those milli-components need tremendous cost and time because products require higher dimensional accuracy than the conventional ones. For instance, conventional mechanical punching process has many drawbacks for applying to high accuracy products. The final radius of hole can be varied and burr which interrupting another procedure is generated. Hydro-mechanical punching process makes possible to reduce amount of burr and obtain the fine shearing surface using the operating fluid. Hydrostatic pressure retards occurrence of initial crack and induces to locate the fracture surface in the middle of sheet to thickness direction. In this paper, Hydro-mechanical punching process is analyzed using finite element method and the effect of hydrostatic pressure is evaluated during punching process. The prediction of fracture is performed adopting the various ductile fracture criteria such as Cockcroft, Brozzo and Oyane's criterion using a user subroutine in ABAQUS explicit.

  • PDF

변형률속도 변화에 따른 INCONEL 718 초내열합금의 동적 물성특성 (Dynamic Material Characteristics of Superalloy INCONEL 718 with the Variation of Strain Rates)

  • 송정한;허훈
    • 소성∙가공
    • /
    • 제14권6호
    • /
    • pp.559-564
    • /
    • 2005
  • INCONEL 718, nickel based superalloy, has good formability, high strength, excellent corrosion resistance and mechanical properties at high temperature. Owing to theses attractive properties, it is utilized in applications such as combustion system, turbine engines and nuclear reactors. In such applications, components are typically required to be tolerant of high stress impact loading. This may cause material degradation and lead to catastrophic failure during service operation. Accurate understanding of material's mechanical properties with various strain rates is required in order to guarantee the reliability of structural parts made of INCONEL 718. This paper is concerned with the dynamic material properties of the INCONEL 718 at various strain rates. The dynamic response of the INCONEL 718 at the intermediate strain rate is obtained from the high speed tensile test and at the high strain rate is from the split Hopkinson pressure bar test. The effect of the strain rate on dynamic flow stress, work hardening characteristics, strain rate sensitivity and elongation to the failure is evaluated with the experimental results. Experimental results from both the quasi-static and the high strain rate up to 5000/sec are interpolated in order to construct the Johnson-Cook model as the constitutive relation that should be applied to simulate and design the structural parts made of rNCONEL 718.

다양한 하중경로에서의 DP980 강판의 파단변형률 예측에 관한 연구 (Prediction of Fracture Strains for DP980 Steel Sheets for a Wide Range of Loading Paths)

  • 박남수;허훈
    • 소성∙가공
    • /
    • 제24권3호
    • /
    • pp.176-180
    • /
    • 2015
  • The current study is concerned with the prediction of fracture strains for DP980 steel sheets over a wide range of loading paths. The use of DP980 steel is increasing significantly in automotive industries for enhanced safety and higher fuel efficiency. The material behavior of advanced high-strength steels (AHSSs) sheets sometimes show unpredictable and sudden fracture during sheet metal forming. A modified Lou-Huh ductile fracture criterion is utilized to predict the formability of AHSSs because the conventional forming limit diagram (FLD) constructed based on necking is unable to evaluate the formability of AHSSs sheets. Fracture loci were extracted from three dimensional fracture envelopes by assuming the plane-stress condition to evaluate equivalent plastic strains at the onset of fracture for a wide range of loading paths. Three different types of specimens -- pure shear, dog-bone and plane strain grooved -- were utilized for tensile testing to calibrate the fracture model of DP980 steel sheets. Fracture strains of each loading path were evaluated such that there shows little deviation between fracture strains predicted from the fracture model and the experimental measurements. From the comparison, it is clearly shown that the three dimensional fracture envelopes can accurately predict the onset of the fracture of DP980 steel sheets for complicated loading conditions from compressive loading to shear loading and to equibiaxial tensile loading.

유한요소해석을 이용한 타이어 보강재용 스틸코드의 잔류응력 최소화 (Minimization of Residual Stress of the Steel Cord for the Tire-reinforcement Using Finite Element Analysis)

  • 이종섭;허훈;이준우;이병호
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 춘계학술대회 논문집
    • /
    • pp.201-204
    • /
    • 2008
  • In this paper, several process parameter studies of the manufacturing process of the steel cords are carried out to verify the relation between the process parameters and the residual stresses on the steel cords. At first, the finite element analysis of the drawing process is performed and the residual stress distributions with respect to the wire material and the area reduction ratio are obtained. The residual stress of the drawn wire is imported the finite element analysis of the twisting process as an initial stress. After that a parameter study of the twisting process is carried out. The process parameters are the applied tension, the over-twisting angle and the tensile strength of the drawn wire. Based on these studies, the optimum values of the process parameters which can remove or reduce the undesired residual stresses are determined. The optimum value of the process parameters are confirmed by the finite element analysis of the elastic recovery process of the steel cords. Finally, the finite element analysis of the roller straightening process is done to study the variation of the distribution of the residual stress before and after the process.

  • PDF