• Title/Summary/Keyword: 허용응력설계법

Search Result 92, Processing Time 0.02 seconds

A Practical Approach of Stress Path Method for Rational Settlement Estimation of Saturated Clay Deposit : Part II (Settlement Estimation Procedure and Application Examples) (포화 점성토지반 침하량의 합리적 평가를 위한 실용적인 응력경로법 적용방법 : Part II (침하량 평가절차와 적용예제))

  • Kim Chang-Youb;Chung Choong-Ki
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.4
    • /
    • pp.99-114
    • /
    • 2005
  • In Part I of this paper, a conceptual approach of the stress path method was newly proposed for a rational estimation of settlements of saturated clay deposits. A detailed procedure for effective evaluation and use of settlement-related characteristic deformation behaviors was developed in order to provide practicality to the new approach. In this Part II, on the basis of the results of Part 1, the concept of the new approach was embodied in the form of a detailed settlement estimation procedure. The applicability and usefulness of the new procedure were strongly supported by various application examples. In addition, possible errors of other conventional settlement estimation methods were investigated by comparing with the new procedure. Because of its flexible applicability for wide range of field conditions, the new procedure will have great usefulness in the practical side. For example, a reasonable foundation design based on allowable settlement criteria can be easily performed and modification of design factors can be readily reflected even during the subsequent construction stage. Especially, the new procedure will be of great use for preliminary work in a large scale construction site where various structures are planned to be constructed on a nearly identical ground condition.

A Study on the Effects on Low Cycle Fatigue Life of a High Pressure Turbine Nozzle due to the Perturbation of Crystal Orientation of Grain of DS Materials (일방향 응고 재료의 결정립 성장 방향 섭동이 고압터빈 노즐 저주기 피로 수명에 미치는 영향에 대한 연구)

  • Huh, Jae Sung;Kang, Young Seok;Rhee, Dong Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.7
    • /
    • pp.653-658
    • /
    • 2016
  • High pressure components of a gas turbine engine are generally made of nickel-base superalloys, using precision casting process due to complicated geometries with intricate channels and cooling holes. Turbine components manufactured from directionally solidified and single crystal materials have columnar grains; however, it is found that the crystals do not grow in its preferred direction, although the orientation can be controlled. This anisotropy can lead to the variations of elastic and Hill's parameters in constitutive equations, and they alter stress distributions and the low cycle fatigue life. We aims to evaluate the effects of perturbed crystal orientations on the structural integrity of a directionally solidified nozzle using low cycle fatigue life. We also attempt to show the necessity for the control of allowed manufacturing errors and stochastic analysis. Our approaches included conjugate heat transfer and structural analysis, along with low cycle fatigue life assessment.

The Optimal Configuration of Arch Structures Using Force Approximate Method (부재력(部材力) 근사해법(近似解法)을 이용(利用)한 아치구조물(構造物)의 형상최적화(形狀最適化)에 관한 연구(研究))

  • Lee, Gyu Won;Ro, Min Lae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.2
    • /
    • pp.95-109
    • /
    • 1993
  • In this study, the optimal configuration of arch structure has been tested by a decomposition technique. The object of this study is to provide the method of optimizing the shapes of both two hinged and fixed arches. The problem of optimal configuration of arch structures includes the interaction formulas, the working stress, and the buckling stress constraints on the assumption that arch ribs can be approximated by a finite number of straight members. On the first level, buckling loads are calculated from the relation of the stiffness matrix and the geometric stiffness matrix by using Rayleigh-Ritz method, and the number of the structural analyses can be decreased by approximating member forces through sensitivity analysis using the design space approach. The objective function is formulated as the total weight of the structures, and the constraints are derived by including the working stress, the buckling stress, and the side limit. On the second level, the nodal point coordinates of the arch structures are used as design variables and the objective function has been taken as the weight function. By treating the nodal point coordinates as design variable, the problem of optimization can be reduced to unconstrained optimal design problem which is easy to solve. Numerical comparisons with results which are obtained from numerical tests for several arch structures with various shapes and constraints show that convergence rate is very fast regardless of constraint types and configuration of arch structures. And the optimal configuration or the arch structures obtained in this study is almost the identical one from other results. The total weight could be decreased by 17.7%-91.7% when an optimal configuration is accomplished.

  • PDF

Evaluation of Tensions and Prediction of Deformations for the Fabric Reinforeced -Earth Walls (섬유 보강토벽체의 인장력 평가 및 변형 예측)

  • Kim, Hong-Taek;Lee, Eun-Su;Song, Byeong-Ung
    • Geotechnical Engineering
    • /
    • v.12 no.4
    • /
    • pp.157-178
    • /
    • 1996
  • Current design methods for reinforced earth structures take no account of the magnitude of the strains induced in the tensile members as these are invariably manufactured from high modulus materials, such as steel, where straits are unlikely to be significant. With fabrics, however, large strains may frequently be induced and it is important to determine these to enable the stability of the structure to be assessed. In the present paper internal design method of analysis relating to the use of fabric reinforcements in reinforced earth structures for both stress and strain considerations is presented. For the internal stability analysis against rupture and pullout of the fabric reinforcements, a strain compatibility analysis procedure that considers the effects of reinforcement stiffness, relative movement between the soil and reinforcements, and compaction-induced stresses as studied by Ehrlich 8l Mitchell is used. I Bowever, the soil-reinforcement interaction is modeled by relating nonlinear elastic soil behavior to nonlinear response of the reinforcement. The soil constitutive model used is a modified vertsion of the hyperbolic soil model and compaction stress model proposed by Duncan et at., and iterative step-loading approach is used to take nonlinear soil behavior into consideration. The effects of seepage pressures are also dealt with in the proposed method of analy For purposes of assessing the strain behavior oi the fabric reinforcements, nonlinear model of hyperbolic form describing the load-extension relation of fabrics is employed. A procedure for specifying the strength characteristics of paraweb polyester fibre multicord, needle punched non-woven geotHxtile and knitted polyester geogrid is also described which may provide a more convenient procedure for incorporating the fablic properties into the prediction of fabric deformations. An attempt to define improvement in bond-linkage at the interconnecting nodes of the fabric reinforced earth stracture due to the confining stress is further made. The proposed method of analysis has been applied to estimate the maximum tensions, deformations and strains of the fabric reinforcements. The results are then compared with those of finite element analysis and experimental tests, and show in general good agreements indicating the effectiveness of the proposed method of analysis. Analytical parametric studies are also carried out to investigate the effects of relative soil-fabric reinforcement stiffness, locked-in stresses, compaction load and seepage pressures on the magnitude and variation of the fabric deformations.

  • PDF

Probabilistic Risk Assessment of a Cable-Stayed Bridge Based on the Prediction Method for the Combination of Failure Modes (붕괴모드 조합 예측법에 의한 PSC사장교의 위험도평가)

  • Park, Mi-Yun;Cho, Hyo-Nam;Cho, Taejun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4A
    • /
    • pp.647-657
    • /
    • 2006
  • Probabilistic Risk Assessment considering statistically random variables is performed for the preliminary design of a Cable Stayed Bridge, which is Prestressed Concrete Bridge consisted of cable and plate girders, based on the method of Working Stress Design and Strength Design. Component reliabilities of cables and girders have been evaluated using the response surface of the design variables at the selected critical sections based on the maximum shear, positive and negative moment locations. Response Surface Method (RSM) is successfully applied for reliability analyses for this relatively small probability of failure of the complex structure, which is hard to obtain through Monte-Carlo Simulations. or through First Order Second Moment Method that can not easily calculate the derivative terms of implicit limit state functions. For the analysis of system reliability, parallel resistance system consisting of cables and plate girder is changed into series connection system and the result of system reliability of total structure is presented. As a system reliability, the upper and lower probabilities of failure for the structural system have been evaluated and compared with the suggested prediction method for the combination of failure modes. The suggested prediction method for the combination of failure modes reveals the unexpected combinations of element failures in significantly reduced time and efforts compared with the previous permutation method or system reliability analysis method, which calculates upper and lower bound failure probabilities.

Development of the Large-Capacity Mooring Fittings according to MEG4(Mooring Equipment Guideline 4) (MEG4(Mooring Equipment Guideline 4) 적용에 따른 대용량 무어링 피팅 개발)

  • Myung-Su Yi;Kwang-Cheol Seo;Joo-Shin Park
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.7
    • /
    • pp.950-957
    • /
    • 2023
  • For safe mooring and towing between the ship and port, the equipment must be designed in accordance with the relevant international regulations. However, some small shipyards and engineering companies often do not fully comprehend the core contents. Therefore, the international regulations regarding towing and mooring equipment are reviewed and the bollard and chock are newly developed based on the Mooring Equipment Guideline 4 (MEG4) standards. A bollard is a mooring equipment used to fix a mooring rope to the hull. It has two columns and is mostly used in a figure eight pattern knots under the mooring condition. The chock, which is used to change the mooring rope direction coming into the ship from outside, is manufactured using a casting with curvature. The two mooring equipment are widely used in the stern, bow, and mid-side. Owing to the increase in the size of container vessels and LNG ships, the mooring rope load has increased and the safe working load of the mooring equipment must be revised. This study summarizes and examines the results of the allowable stress method obtained using finite element analysis modelling. To consider the mesh size effect, a reasonable criteria was suggested by referring the existing class guidance. Additionally, the safe working load was verified through nonlinear collapse analysis, and the elastic region against load increments was confirmed. Furthermore, the proposed evaluation method can be used to develop similar equipment in the near future.

Evaluation of Structural Stability of a Simple-typed Cultivation Facility for Growing Pleurotus ostreatus (간이 느타리재배사의 구조 안전성 평가)

  • Yum, Sung-Hyun;Yun, Nam-Kyu;Kim, Chul-Soo
    • Journal of Bio-Environment Control
    • /
    • v.17 no.3
    • /
    • pp.181-187
    • /
    • 2008
  • The structural stability of a simple-typed cultivation facility with a width of 5.6 m for growing Pleurotus ostreatus was analyzed by modeling the facility as three-dimensional steel frames. The computation was done by using the finite element analysis program, ANSYS and the criterion of determining structural stability was based on the allowable stress design (ASD). The computational results showed that the structure with a straight-typed bed column was more stable than those with other types of bed columns against snow depth but there was little difference against wind velocity. As results, the interval of rafter had a more influence on safety wind velocity than that of bed column, while the interval of bed column was more important to safety snow depth. Finally the bed column against buckling was stable in all cases considered in this paper.

The Shape Optimization of Plane Truss Structures with Constraints based on the Failure Probability of Member (부재(部材)의 파괴확률(破壞確率)을 고려(考慮)한 트러스 구조물(構造物)의 형장최적화(形狀最適化))

  • Lee, Gyu Won;Lim, Byeong Yong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.7 no.3
    • /
    • pp.141-154
    • /
    • 1987
  • The algorithm proposed utilizes the tow-levels technique. In the first level which consists of teeatment only the applied load and design stress as the random variables whose parent distribution has the normal distribution, the cross-sectional areas of the truss members such that the their probabilities of failure have the preseribed failure probabilites are optimized by transforming the nonlinear problem into SUMT, and solving it utilizing modified Newton-Raphson method. In the second level, the geometric shape of truss structure is optimized by utilizing the unidirectional search technique of Powell method which makes it possible to minimize only the objective function. The algorithm proposed is numerically tested for the several truss structures with various shapes and loading conditions. The numerical analysis shows that the rate of decreasing the weight of truss structures is dependent on the prescribed failure probability of the each member of truss structure and the covariance of the applied load and design stress.

  • PDF

The Analysis and Field Measurement of Longitudinal Track Forces for Long Railroad Bridges (교량상 궤도축력의 해석 및 실측결과 비교)

  • Kang, Kee Dong;Park, Jong Bang;Kim, In Jae;Park, Dae Geun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.4
    • /
    • pp.907-913
    • /
    • 1994
  • The design of railroad bridges differs from road bridges because of the interface between track structure and bridge structure. The track generally consists of Continuous Welded Rail(CWR) which is fixed by fasteners to the sleepers embedded in the ballast. The ballast provides the interface between the track structure and the bridge structure. Large longitudinal forces can develop from the temperature variation in rail and bridge structure. These longitudinal forces are specially important for long bridges because the bridge layout for span length, pier dimensions and arrangement and type of bearings can be governed by these forces. This report provides a comparison of longitudinal track forces determined by analysis and actual measured track forces. In recent practice the longitudinal track force for European railways is analyzed using a finite element analysis method. This method is very time-consuming and requires the detail design of the bridge to be complete. Redesign is required if the design criteria for longitudinal track forces are not satisfied. There is a need to develop a simple analysis method considering the large number of bridge structures and a relatively short design time on the Korean High Speed Rail Project. The analysis results presented herein, based on a simplified analysis, show good agreement with those obtained by finite element analysis, as well as with those measured on an actual track. The proposed analysis method is particularly useful for the preliminary design of bridge structures.

  • PDF

Optimal Design of Overtopping Wave Energy Converter Substructure based on Smoothed Particle Hydrodynamics and Structural Analysis (SPH 및 구조해석에 기반한 월파수류형 파력발전기 하부구조물 최적 설계)

  • Sung-Hwan An;Jong-Hyun Lee;Geun-Gon Kim;Dong-hoon Kang
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.7
    • /
    • pp.992-1001
    • /
    • 2023
  • OWEC (Overtopping Wave Energy Converter) is a wave power generation system using the wave overtopping. The performance and safety of the OWEC are affected by wave characteristics, such as wave height, period. To mitigate this issue, optimal OWEC designs based on wave characteristics must be investigated. In this study, the environmental conditions along the Ulleungdo coast were used. The hydraulic efficiency of the OWEC was calculated using SPH (Smoothed Particle Hydrodynamics) by comparing 4 models that changed the substructure. As a result, it was possible to change the substructure. Through design optimization, a new truss-type structure, which is a substructure capable of carrying the design load, was proposed. Through a case study using member diameter and thickness as design variables, structural safety was secured under allowable stress conditions. Considering wave load, the natural frequency of the proposed structure was compared with the wave period of the relevant sea area. Harmonic response analysis was performed using wave with a 1-year return period as the load. The proposed substructure had a reduced response magnitude at the same exciting force, and achieved weight reduction of more than 32%.