• Title/Summary/Keyword: 허용설계응력

Search Result 236, Processing Time 0.037 seconds

Damage Tolerance Analysis Using Surrogate Model (근사모델을 사용한 손상허용해석)

  • Jang, Byung-Wook;Im, Jae-Hyuk;Park, Jung-Sun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.4
    • /
    • pp.306-313
    • /
    • 2011
  • The damage tolerance analysis is required to guarantee the structural safety and the reliability for aircraft components. The damage tolerance method, which evaluate the life considering the initial crack, considers a fatigue design model of the aircraft main structure. The fatigue crack growth life should be calculated in damage tolerance analysis and the inspection time to define the replacement cycle. In this paper, the damage tolerance analysis is performed for a turbine wheel which has complex geometry. The equation of the stress intensity factor for complex geometry is hard to know, so that they are usually processed by finite element analysis which takes long time. To solve this problem, the stress intensity factors at specified crack are obtained by the FEA and the crack growth life is evaluated using the surrogate model which is generated by the regression analysis of the FEA data. From the results, the efficiency of the crack growth life calculation and the damage tolerance analysis could be increased by taking the surrogate model.

複合構造의 結合

  • 홍창선
    • Journal of the KSME
    • /
    • v.22 no.1
    • /
    • pp.9-14
    • /
    • 1982
  • 복합재료를 이용하여 부품제작을 한 후 어떠한 결합방법을 채택할 것인가를 결정할 때 고려해 야할 점을 기계적 결합법과 접착결합법을 비교하여 검토하였다. 기계적 결합은 하중을 많이 받고 분해 및 결합이 자주 예상되는 부품에 채택해야 할 것이며 복합재료의 특성을 고려하여 보강 시에 부착하는 평판의 섬유방향은 가급적 드릴구멍주위를 부드럽게 하여 응력집중을 낮출 수 있으며 하중의 종류에 따라 적층의 섬유방향을 조절함으로서 응력집중을 조절할 수 있다. 드릴 구멍 주위인 파손은 평판의 폭과 구멍의 직경등이 크게 작용함으로 강도해석을 할 경우에 응력 해석을 한 후 허용응력등을 결정해야할 것이다. 접착졀합법은 작업이 간단하나 신뢰도가 떨어지 므로 하중을 많이 받는 구조물에의 사용에 주의를 요하며 설계방법도 매우 다양하게 제안되어 있어 선택함에 있어 하중 환경조건등을 점검해야할 것이다. 접착결합법은 드릴구멍같은 불연속 성을 갖지 않기 때문에 응력집중이 생기지 않으나 접착층의 길이등 기하학적 형상에 따라 다르게 나타남으로 잡착층의 분리가 일어나지 않도록 설계되어야 한다. 특히 복합재료의 이방성인 성 질을 감안하여 접착층에 이웃하는 피접착층의 섬유방향에 주의해야 하며 층간응력이 파손에 미 치는 영향을 고려하여 설계에 임해야 한다.

  • PDF

A Conversion of Load Carrying Capacity for Existing Steel Box Girder Bridge Based on Limit State Design Method (한계상태설계법에 의한 기존 강박스거더교의 내하력 환산)

  • Noh, Dong-Oh;Kyung, Kab-Soo;Park, Jin-Eun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.6
    • /
    • pp.89-96
    • /
    • 2018
  • Bridge structures are a socially important infrastructure and safety management of bridges during the public service period is important. Steel box girder bridges, which account for a large percentage of road bridges, have been designed by allowable stress design method(ASD) and load carrying capacity have been evaluated using ASD. Although design specification has recently been changed to limit state design method(LSD), in most cases, ASD is still used for load carrying capacity evaluation. In this study, the two design methods were used to compare the results of a load rating factor evaluation on a number of bridges, and we are going to find out how to convert the existing rating factor by ASD into rating factor by LSD. The results of this study are expected to can be used as a basis for determining the need for reinforcement and evaluating load carrying capacity by LSD in bridge maintenance.

An Optimum Design of Sandwich Panel at Fixed Edges (고정지지된 Sandwich Panel의 최적설계에 관한 연구)

  • K.S. Kim;I.T. Kim;Y.Y. Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.29 no.2
    • /
    • pp.115-122
    • /
    • 1992
  • A sandwich element is a special Hybrid structural form of the composite construction, which is consisted of three main parts : thin, stiff and relatively high density faces separated by a thick, light, and weaker core material. In a sandwich construction, the shear deformation of the faces. Therefore, in the calculation of the bending stiffness, the shear effect should be included. In this paper, the minimum weight is selected as an object function, as the weight critical structures are usually composed of these kind of construction. To obtain the minimum weight of sandwich panel, the principle of minimum potential energy is used and as for the design constraints, the allowable bending stress of face material, the allowable shear stress of core material, the allowable value of panel deflection and the wrinkling stress of faces are adopted, as well as the different boundary conditions. For the engineering purpose of sandwich panel design, the results are tabulated, which are calculated by using the nonlinear optimization technique SUMT.

  • PDF

Comparison of Allowable Axial Stress Provisions of Cylindrical Liquid Storage Tanks under Seismic Excitation (지진 하중을 받는 원통형 플랜트 탱크 구조물의 축방향 허용압축응력 설계기준 비교 연구)

  • Oh, Chang Kook;Lee, So Ri;Park, Jang Ho;Bae, Doobyong
    • Journal of Korean Society of Steel Construction
    • /
    • v.28 no.4
    • /
    • pp.293-301
    • /
    • 2016
  • Stability of cylindrical liquid storage tanks under seismic excitation could prevent catastrophic disaster of human life and economic loss. Domestic provisions on allowable compressive stress in tank walls to prohibit buckling failure are either incomplete or inconsistent, so foreign specifications such as API 650, BS EN 1998-4:2006 or New Zealand Standards are employed in stability design. In this study, response spectrum analyses are performed for plant tanks having different ratios of height to diameter or diameter to thickness to calculate hydrodynamic pressure on tank walls. Then nonlinear buckling analyses are conducted to estimate magnitude of buckling stress. By comparing analysis results with those from foreign design specifications, appropriate domestic design provisions are suggested.

An Experimental Study on Allowable Compressive Stress at Prestress Transfer in Pre-Tensioned Concrete Members (프리텐션된 콘크리트 부재의 프리스트레스 도입시 허용압축응력에 관한 실험적 연구)

  • Lee, Jeong Yeon;Lee, Deuck Hang;Kim, Kang Su;Park, Min Kook;Yoon, Sang Chun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.4
    • /
    • pp.9-17
    • /
    • 2012
  • In the previous research, allowable compressive stress was analyzed based on strength theory, in which primary effect factors on the allowable compressive stress, such as eccentricity ratio, section type, section size, prestress and self-weight moment, were considered. As its results, allowable compressive stress equations were proposed. As a series of the previous research, this paper presents an experimental study on the prestress at transfer of pre-tensioned members with different eccentricity ratios. The results shows that ACI318-08 and EC2-02 are unconservative for the members under low eccentricity ratios, and they are conservative for the members under high eccentricity ratios. Compared to the code provisions, the results indicates that the proposed equation reasonably well evaluates the allowable compressive stresses for those with different eccentricity ratios.

Analysis of Allowable Stresses of Machine Graded Lumber in Korea (국내 기계등급구조재의 허용응력 분석)

  • Hong, Jung-Pyo;Oh, Jung-Kwon;Park, Joo-Saeng;Han, Yeon Jung;Pang, Sung-Jun;Kim, Chul-Ki;Lee, Jun-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.4
    • /
    • pp.456-462
    • /
    • 2015
  • 365 pieces of domestic $38{\times}140{\times}3600mm$ Red pine structural lumber were machine graded conforming to a softwood structural lumber standard (KS F 3020). The allowable bending stresses calculated for each grade were compared with the values currently tabulated in the standard. Four calculation methods for lower $5^{th}$ percentile bending stress were non-parametric estimation with 75% confidence level, 2-parameter and 3-parameter Weibull distribution fit, and bending modulus of rupture (MOR)-modulus of elasticity (MOE) regression based method. Only the data set of Grades E8, E9, and E10 were statistically eligible for the $5^{th}$ percentile calculation. The MOR-MOE regression based method only was able to estimate the lower $5^{th}$ percentile values theoretically for the full range of grades. The results showed that all allowable bending stresses calculated were lower than the design values tabulated in the standard. This implies that the current machine grading system has the pitfall of structural safety. Improvement in current machine grading system could be achieved by introducing the bending strength and stiffness combination grade system.

스프링의 피로 파손 확률 분포 예측

  • Kim, Hyung-Ik;Heo, Yong;Park, Jae-Sil;Seok, Chang-Sung;Jang, Pil-Soo;Joo, Jae-Man;Kang, Jung-Hoon
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.78-78
    • /
    • 2004
  • 기계 및 구조물의 설계시에는 허용응력 이하의 설계 조건으로 설계하지만 반복 작동을 하게 되는 기계 시스템의 경우에는 피로에 의한 파괴 현상이 나타나게 된다. 대부분의 기계 및 구조물은 사용시 변동 하중 상태에 놓이는 경우가 많게 되고 이로 인해 변동 응력이 작용되며 그 재료의 정적 강도보다 상당히 작은 간이라도 반복횟수가 증가함으로써 금속재료의 강도가 저하되어 결국 피로 파괴가 발생한다. 자동차, 항공기, 압축기, 펌프, 터빈 등과 같이 반복 작동을 하게 되는 기계 시스템에서 일어나는 파괴 현상 중에서 피로 파괴가 차지하는 비율이 점차 늘어나고 있다.(중략)

  • PDF

Seismic Evaluation for Strainer in the Primary Cooling System (일차 냉각계통 스트레이너에 대한 내진 건전성 평가)

  • 정철섭
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.13 no.3
    • /
    • pp.295-304
    • /
    • 2000
  • To evaluate the structural integrity for the strainer under seismic loading the seismic analysis and design were performed for T-type strainer in accordance with ASME, Section Ⅲ, Class 3(ND). Since there are no specified design requirements for the strainer in ASME Code, the strainer body was analysed according to ND-3500, valve design. Flanged joints connected with PCS piping were designed according to ND-3658.3. And the criteria for the cover flange was governed by the Appendix XI. Both a frequency analysis and an equivalent static seismic analysis of the strainer were carried out using the finite element computer program, ANSYS. The frequency analysis results show the fundamental natural frequency is greater than 33Hz, thus justifying the use of the equivalent static analysis through which membrane and bending stresses are obtained in the critical points near the branch connection area. The results of the seismic evaluation fully satisfied with the structural acceptance criteria of the ASME Code. Accordingly the structural integrity on the strainer body and flanges were proved.

  • PDF

Structural Safety Evaluation of Multi-Pressure Integrated Chamber for Sport-Multi-Artificial Environment System (스포츠 멀티 인공환경 시스템을 위한 다중압력 일체형 챔버의 구조안전성 평가)

  • Lee, Joon-Ho;Kang, Sang-Mo;Chae, Jae-Ick
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.3
    • /
    • pp.324-328
    • /
    • 2019
  • There are several dedicated individual chambers for sports that are supplied and used, but none of them are multi-pressured all-in-one chambers that can provide a sport-multi environment simultaneously. In this study, we design a multi-pressure (positive / atmospheric / negative pressure) integrated chamber that can be used for the sport-multi-artificial environment system. We presented new chamber designs with enlarged space for the tall users and then carried out structural analysis with maximum stress and structural safety. Under the targeted allowable pressure conditions, maximum stresses occurred at the joint of the shell and the entrance, the structural safety of the chamber was evaluated with the allowable stress of its material. As a result of the structural analysis of the multi-pressure integrated chamber, the maximum stress for the positive pressure and negative pressure conditions was much smaller than the allowable stress of its material. And as a result of the structural safety evaluation, it was confirmed that the design of the final prototype for the chamber was structurally safe by satisfying the safety factor of 2 or more.