• Title/Summary/Keyword: 행위 기반 공격 탐지

Search Result 148, Processing Time 0.023 seconds

A Rogue AP Detection Method Based on DHCP Snooping (DHCP 스누핑 기반의 비인가 AP 탐지 기법)

  • Park, Seungchul
    • Journal of Internet Computing and Services
    • /
    • v.17 no.3
    • /
    • pp.11-18
    • /
    • 2016
  • Accessing unauthorized rogue APs in WiFi environments is a very dangerous behavior which may lead WiFi users to be exposed to the various cyber attacks such as sniffing, phishing, and pharming attacks. Therefore, prompt and precise detection of rogue APs and properly alarming to the corresponding users has become one of most essential requirements for the WiFi security. This paper proposes a new rogue AP detection method which is mainly using the installation information of authorized APs and the DHCP snooping information of the corresponding switches. The proposed method detects rogue APs promptly and precisely, and notify in realtime to the corresponding users. Since the proposed method is simple and does not require any special devices, it is very cost-effective comparing to the wireless intrusion prevention systems which are normally based on a number of detection sensors and servers. And it is highly precise and prompt in rogue AP detection and flexible in deployment comparing to the existing rogue AP detection methods based on the timing information, location information, and white list information.

Adaptive Anomaly Movement Detection Approach Based On Access Log Analysis (접근 기록 분석 기반 적응형 이상 이동 탐지 방법론)

  • Kim, Nam-eui;Shin, Dong-cheon
    • Convergence Security Journal
    • /
    • v.18 no.5_1
    • /
    • pp.45-51
    • /
    • 2018
  • As data utilization and importance becomes important, data-related accidents and damages are gradually increasing. Especially, insider threats are the most harmful threats. And these insider threats are difficult to detect by traditional security systems, so rule-based abnormal behavior detection method has been widely used. However, it has a lack of adapting flexibly to changes in new attacks and new environments. Therefore, in this paper, we propose an adaptive anomaly movement detection framework based on a statistical Markov model to detect insider threats in advance. This is designed to minimize false positive rate and false negative rate by adopting environment factors that directly influence the behavior, and learning data based on statistical Markov model. In the experimentation, the framework shows good performance with a high F2-score of 0.92 and suspicious behavior detection, which seen as a normal behavior usually. It is also extendable to detect various types of suspicious activities by applying multiple modeling algorithms based on statistical learning and environment factors.

  • PDF

A Study on the Malicious Web Page Detection Systems using Real-Time Behavior Analysis (실시간 행위 분석을 이용한 악성코드 유포 웹페이지 탐지 시스템에 대한 연구)

  • Kong, Ick-Sun;Cho, Jae-Ik;Son, Tae-Shik;Moon, Jong-Sub
    • The KIPS Transactions:PartC
    • /
    • v.19C no.3
    • /
    • pp.185-190
    • /
    • 2012
  • The recent trends in malwares show the most widely used for the distribution of malwares that the targeted computer is infected while the user is accessing to the website, without being aware of the fact that, in which the harmful codes are concealed. In this thesis, we propose a new malicious web page detection system based on a real time analysis of normal/abnormal behaviors in client-side. By means of this new approach, it is not only the limitation of conventional methods can be overcome, but also the risk of infection from malwares is mitigated.

Real-Time Visualization of Web Usage Patterns and Anomalous Sessions (실시간 웹 사용 현황과 이상 행위에 대한 시각화)

  • 이병희;조상현;차성덕
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.14 no.4
    • /
    • pp.97-110
    • /
    • 2004
  • As modem web services become enormously complex, web attacks has become frequent and serious. Existing security solutions such as firewalls or signature-based intrusion detection systems are generally inadequate in securing web services, and analysis of raw web log data is simply impractical for most organizations. Visual display of "interpreted" web logs, with emphasis on anomalous web requests, is essential for an organization to efficiently track web usage patterns and detect possible web attacks. In this paper, we discuss various issues related to effective real-time visualization of web usage patterns and anomalies. We implemented a software tool named SAD (session anomaly detection) Viewer to satisfy such need and conducted an empirical study in which anomalous web traffics such as Misuse attacks, DoS attacks, Code-Red worms and Whisker scans were injected. Our study confirms that SAD Viewer is useful in assisting web security engineers to monitor web usage patterns in general and anomalous web sessions in particular.articular.

Behavior and Script Similarity-Based Cryptojacking Detection Framework Using Machine Learning (머신러닝을 활용한 행위 및 스크립트 유사도 기반 크립토재킹 탐지 프레임워크)

  • Lim, EunJi;Lee, EunYoung;Lee, IlGu
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.31 no.6
    • /
    • pp.1105-1114
    • /
    • 2021
  • Due to the recent surge in popularity of cryptocurrency, the threat of cryptojacking, a malicious code for mining cryptocurrencies, is increasing. In particular, web-based cryptojacking is easy to attack because the victim can mine cryptocurrencies using the victim's PC resources just by accessing the website and simply adding mining scripts. The cryptojacking attack causes poor performance and malfunction. It can also cause hardware failure due to overheating and aging caused by mining. Cryptojacking is difficult for victims to recognize the damage, so research is needed to efficiently detect and block cryptojacking. In this work, we take representative distinct symptoms of cryptojacking as an indicator and propose a new architecture. We utilized the K-Nearst Neighbors(KNN) model, which trained computer performance indicators as behavior-based dynamic analysis techniques. In addition, a K-means model, which trained the frequency of malicious script words for script similarity-based static analysis techniques, was utilized. The KNN model had 99.6% accuracy, and the K-means model had a silhouette coefficient of 0.61 for normal clusters.

An Interpretable Log Anomaly System Using Bayesian Probability and Closed Sequence Pattern Mining (베이지안 확률 및 폐쇄 순차패턴 마이닝 방식을 이용한 설명가능한 로그 이상탐지 시스템)

  • Yun, Jiyoung;Shin, Gun-Yoon;Kim, Dong-Wook;Kim, Sang-Soo;Han, Myung-Mook
    • Journal of Internet Computing and Services
    • /
    • v.22 no.2
    • /
    • pp.77-87
    • /
    • 2021
  • With the development of the Internet and personal computers, various and complex attacks begin to emerge. As the attacks become more complex, signature-based detection become difficult. It leads to the research on behavior-based log anomaly detection. Recent work utilizes deep learning to learn the order and it shows good performance. Despite its good performance, it does not provide any explanation for prediction. The lack of explanation can occur difficulty of finding contamination of data or the vulnerability of the model itself. As a result, the users lose their reliability of the model. To address this problem, this work proposes an explainable log anomaly detection system. In this study, log parsing is the first to proceed. Afterward, sequential rules are extracted by Bayesian posterior probability. As a result, the "If condition then results, post-probability" type rule set is extracted. If the sample is matched to the ruleset, it is normal, otherwise, it is an anomaly. We utilize HDFS datasets for the experiment, resulting in F1score 92.7% in test dataset.

Classification of False Alarms based on the Decision Tree for Improving the Performance of Intrusion Detection Systems (침입탐지시스템의 성능향상을 위한 결정트리 기반 오경보 분류)

  • Shin, Moon-Sun;Ryu, Keun-Ho
    • Journal of KIISE:Databases
    • /
    • v.34 no.6
    • /
    • pp.473-482
    • /
    • 2007
  • Network-based IDS(Intrusion Detection System) gathers network packet data and analyzes them into attack or normal. They raise alarm when possible intrusion happens. But they often output a large amount of low-level of incomplete alert information. Consequently, a large amount of incomplete alert information that can be unmanageable and also be mixed with false alerts can prevent intrusion response systems and security administrator from adequately understanding and analyzing the state of network security, and initiating appropriate response in a timely fashion. So it is important for the security administrator to reduce the redundancy of alerts, integrate and correlate security alerts, construct attack scenarios and present high-level aggregated information. False alarm rate is the ratio between the number of normal connections that are incorrectly misclassified as attacks and the total number of normal connections. In this paper we propose a false alarm classification model to reduce the false alarm rate using classification analysis of data mining techniques. The proposed model can classify the alarms from the intrusion detection systems into false alert or true attack. Our approach is useful to reduce false alerts and to improve the detection rate of network-based intrusion detection systems.

A Methodology of XAI-Based Network Features Extraction for Rapid IoT Botnet Behavior Analysis (신속한 IoT 봇넷 행위분석을 위한 XAI 기반 네트워크 특징 추출 방법론)

  • Doyeon Kim;Chungil Cha;Kyuil Kim;Heeseok Kim;Jungsuk Song
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.34 no.5
    • /
    • pp.1037-1046
    • /
    • 2024
  • The widespread adoption of the Internet of Things (IoT) has enhanced efficiency and convenience across various fields, but it has also led to a surge in security threats. Among these, IoT botnets are particularly concerning as they can rapidly infect a large number of devices and launch various types of attacks, making them a significant security threat. In IoT environments where implementing security measures on individual devices is challenging, establishing a security monitoring system for real-time detection and response is essential to mitigate the risks posed by botnets. In the field of security monitoring, it is crucial not only to detect botnets but also to analyze their detailed behaviors to devise effective countermeasures. Security experts devote considerable effort to analyzing the payloads of detected threats to understand botnet behavior and develop appropriate responses. However, analyzing all threats manually is time-consuming and costly. To address this, our study proposes an XAI-based network feature extraction methodology to enhance the effectiveness of IoT botnet behavior analysis. This study proposes a practical security monitoring methodology for IoT botnet behavior analysis and response, consisting of three steps: 1) BPE and TF-IDF based payload feature extraction, 2) XAI-based feature importance analysis, and 3) visualization of decision rationale based on feature importance. This approach provides security experts with intuitive visual evidence of IoT attacks and reduces analysis time, contributing to faster decision-making and response strategy development in security monitoring.

모바일 게임 보안 동향

  • Kim, Eunjin
    • Review of KIISC
    • /
    • v.27 no.4
    • /
    • pp.43-50
    • /
    • 2017
  • 온라인 게임 내 가상재화를 현실 세계의 재화로 교환할 수 있다는 점 때문에, PC기반 온라인 게임 내 가상세계는 많은 작업장(Gold-farmer)들로 인한 부정행위가 빈번히 일어나고 있다. 사이버 재화를 현금거래하는 RMT (Real Money Trading)은 과거에는 PC기반 온라인게임, 특히 고포류 게임이나 MMORPG와 같은 장르들에 주로 존재했으나, 모바일 게임에서도 최근 몇 년 간 거래시장이 활발해 지고, 가치가 높은 아이템들이 출현하기 시작하면서 거래 규모가 비약적으로 성장하고 있다. 이로 인해, PC게임에서만 존재하던 작업장이 모바일 게임에도 출현하고, 게임계정 도용을 위한 모바일 악성앱이 등장하는 등 모바일 게임 내의 부정 행위 및 공격 시도 역시 증가하고 있다. 모바일 게임은 하드웨어의 성능 제약 문제, 네트워크 통신의 항상성이 보장되지 않는 문제, 안드로이드 등 플랫폼 OS 자체의 보안 문제, 앱 자체의 디컴파일 문제와 같이 근본적으로 해결하기 어려운 취약점이 존재하는 환경에서 구동되기 때문에 PC기반 게임에서의 게임 봇 및 작업장 탐지와 같은 기법을 적용하기에는 적합하지 않다. 본 연구에서는 모바일 게임 보안과 PC 게임 보안 기법들을 비교하고, 향후 모바일 게임 보안 향상을 위해 할 수 있는 방안을 제시해 보도록 한다.

A Study on Ransomware Detection Methods in Actual Cases of Public Institutions (공공기관 실제 사례로 보는 랜섬웨어 탐지 방안에 대한 연구)

  • Yong Ju Park;Huy Kang Kim
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.33 no.3
    • /
    • pp.499-510
    • /
    • 2023
  • Recently, an intelligent and advanced cyber attack attacks a computer network of a public institution using a file containing malicious code or leaks information, and the damage is increasing. Even in public institutions with various information protection systems, known attacks can be detected, but unknown dynamic and encryption attacks can be detected when existing signature-based or static analysis-based malware and ransomware file detection methods are used. vulnerable to The detection method proposed in this study extracts the detection result data of the system that can detect malicious code and ransomware among the information protection systems actually used by public institutions, derives various attributes by combining them, and uses a machine learning classification algorithm. Results are derived through experiments on how the derived properties are classified and which properties have a significant effect on the classification result and accuracy improvement. In the experimental results of this paper, although it is different for each algorithm when a specific attribute is included or not, the learning with a specific attribute shows an increase in accuracy, and later detects malicious code and ransomware files and abnormal behavior in the information protection system. It is expected that it can be used for property selection when creating algorithms.