본 연구에서는 API 호출을 은닉할 수 있는 새로운 유형의 유저모드 기반 루트킷으로 Cuckoo Sandbox를 회피하는 기법과 이를 탐지하기 위한 연구를 한다. Cuckoo Sandbox의 행위 분석을 회피하기 위해 잠재적으로 출현 가능한 은닉된 코드 이미지 기반의 신종 루트킷 원리를 연구하고 탐지하기 위한 방안을 함께 연구한다. 네이티브 API 호출 코드 영역을 프로세스 공간에 직접 적재하여 네이티브 API를 호출하는 기법은 Cuckoo Sandbox에서 여전히 잠재적으로 행위 분석 회피가 가능하다. 본 연구에서는 은닉된 외부주소 호출 코드 영역의 탐지를 위해 프로세스의 가상메모리 공간에서 실행 가능한 페이지 영역을 탐색 후 코사인 유사도 분석으로 이미지 탐지 실험을 하였으며, 코드 영역이 맵핑된 정렬 단위의 4가지 실험 조건에서 평균 83.5% 유사도 탐지 결과를 확인하였다.
최근 등장하는 랜섬웨어들은 다양한 공격 기법과 다양한 경로를 통해 공격을 수행하고 있어 조기 탐지와 방어에 많은 어려움을 겪고 있으며, 그 피해 규모도 날로 증가하고 있다. 따라서 본 논문에서는 효과적인 랜섬웨어 탐지를 위하여 파일 암호화와 암호화 패턴을 머신러닝 기반으로 하는 감지 기법을 제안한다. 파일 암호화는 랜섬웨어가 공격하는데 필수적으로 사용하는 기능으로 암호 행위와 암호화 패턴을 분석함으로써 랜섬웨어를 탐지하고 랜섬웨어의 특정 변종이나 새로운 유형의 랜섬웨어를 탐지할 수 있기 때문에 랜섬웨어 공격을 식별하고 차단하는 데 매우 효과적이다. 제안한 머신러닝 기반의 암호화 행위 감지 기법은 암호화 특성과 암호화 패턴 특성을 추출하여 머신러닝 기반의 분류기를 통해 각각 학습을 시켜 해당 행위에 대한 탐지를 진행하고 최종 결과는 두 분류기의 평가 결과를 기반으로 앙상블 분류기에서 랜섬웨어 유무를 판별하여 좀 더 정확도를 높였다. 또한, 제안한 기법을 numpy와 pandas, 파이썬의 사이킷런 라이브러리를 사용하여 구현하여 평가지표를 사용한 성능를 평가한 결과 평균적으로 94%,의 정확도와 95%의 정밀도, 93%의 재현률과 95%의 F1 스코어가 산출되었다. 성능 평가 결과를 보면 암호화 행위 감지를 통해 랜섬웨어 탐지가 가능하다는 것을 확인할 수 있었고 랜섬웨어의 사전 탐지를 위해 제안한 기법의 성능을 높이기 위한 연구도 계속해서 진행되어야 한다.
악성코드 유포자들은 웹 어플리케이션 취약점 공격을 이용해 주로 악성코드를 유포한다. 이러한 공격들은 주로 악성링크를 통해 이루어지며, 이를 탐지하고 분석하는 연구가 활발히 이루어지고 있다. 하지만, 현재의 악성링크 탐지 시스템은 대부분 시그니처 기반이어서 난독화 된 악성링크는 탐지가 거의 불가능하고 알려진 취약점은 백신을 통해 공격을 사전에 방지 할 수 있지만 알려지지 않은 취약점 공격은 사전 방지가 불가능한 실정이다. 이러한 한계점을 극복하기 위해 기존의 시그니처 기반 탐지 방법을 지양하고 행위기반 탐지 시스템에 관한 연구가 이루어지고 있다. 하지만 현재 개발된 탐지 시스템은 현실적으로 제약사항이 많아 실제로 활용하기에는 한계가 있다. 본 논문에서는 이와 같은 한계를 극복하고 탐지 효율을 높일 수 있는 새로운 웹 브라우저 기반 악성행위 탐지 시스템인 WMDS (Web-browser based Malicious behavior Detection System)를 소개 하고자 한다.
온라인 시험은 시간과 공간에 제약이 없다. 수험자의 시험 장소가 별도로 필요하지 않고, 시험 장소로의 이동에 필요한 시간과 비용이 들지 않는다는 장점이 있다. 그러나 온라인 시험은 개별적 환경에서 시험을 진행하기 때문에 다양한 부정행위가 가능하다는 단점이 있다. 그리고 시험 감독 방법이 부족하여 부정행위 탐지에 어려움이 있다. 또 시험 과정과 결과 데이터가 디지털 데이터로만 존재하여 시험 결과 위조 여부 확인을 위해 매건 해당 시험 결과가 저장된 서버에서 직접 확인해야 하는 번거로움이 있고 악의적으로 시험과 관련 데이터를 변경한 경우 진위 확인이 불가하다. 본 연구에서는 부정행위 탐지를 위해 시험 진행 관련 데이터를 블록체인에 저장하는 블록체인 기반 온라인 시험 부정행위 탐지 시스템을 개발하여 온라인 시험의 신뢰도를 높이고자 하였다. 실험을 통해 시험 결과 위변조 부정행위가 탐지됨을 확인하였다.
본 연구에서는 인터넷 상에서 발생되는 부정행위를 탐지할수 있는 신뢰 모델을 생성하고 개인의 프라이버시를 보장할수 있는 모델을 제시하였다. 인터넷 상에 게시판에 올려진 부정해위를 탐지하기 위해 앙상블 접근 방식 기반의 분류 모델을 제시하고 자동화된 도구를 제안하였다. 본 연구는 데이터에 대한 탐색적 데이터 분석을 수행하고 얻은 통찰력을 사용해 자연어처리 가반 텍스트를 기반으로 앙상블 기반의 위조 탐지 알고리즘을 제안하였다. 제안 알고리즘의 정확도는 99%로 자연어 처리에 높은 탐지율을 보였다.
Mission-critical 시스템의 경우 자가 치유는 신뢰성을 보장하기 위한 기술 중 하나이다. 자가치유는 오류 탐지와 오류 회복으로 이루어져 있으며 오류 탐지는 오류 회복을 가능하게 하는 자가 치유의 중요한 첫 단계이지만 시스템에 과부하를 주는 문제가 있다. 모델 기반의 방법 등으로 오류를 탐지할 수 있는데 시스템의 모든 행위를 통지하고 정상 행위 모델과 통지된 시스템의 행위를 비교하여야 하므로 그양이 많고 부하가 크기 때문이다. 본 논문에서는 모델 기반의 오류 탐지 방법을 보완하는 아키텍처 기반의 다계층적 자가적응형 모니터링 방법을 제안한다. 소프트웨어 아키텍처 상에서 오류 탐지의 중요도는 컴포넌트 마다 다르다. 각 컴포넌트마다 발생하는 오류의 심각도와 빈도가 다르기 때문이다. 모니터링 중요도가 높은 컴포넌트에는 강도가 높고 모니터링 중요도가 낮은 컴포넌트에는 강도가 낮도록 모니터가 적응한다면 오류 탐지의 부하는 줄이고 효율은 유지시킬 수 있다. 또한 소프트웨어의 환경 변화 및 아키텍처상의 변화 등에 따라 오류 발생 빈도가 변화하여 컴포넌트의 오류 탐지 중요도가 변화하기 때문에 학습을 통해 이를 추적하여 자가적응적으로 중요도가 높은 컴포넌트를 집중 모니터링 한다.
Journal of the Korean Data and Information Science Society
/
제22권6호
/
pp.1153-1166
/
2011
차량 네트워크에서 부정행위를 탐지하는 것은 안전 관련 응용 및 혼잡 완화 응용을 포함하는 광범위한 영향을 갖는 매우 중요한 문제이다. 대부분 부정행위 탐지 방법들은 악의적인 노드들의 탐지와 관련이 있다. 대부분 상황들에서, 차량들은 운전자의 이기적인 이유 때문에 틀린 정보를 보낼 수 있다. 합리적인 행위 때문에 부정행위를 하는 노드를 식별하는 것보다 거짓 경보 정보를 탐지하는 것이 더 중요하다. 이 논문에서, 우리는 경보 메시지를 전송한 후, 부정행위를 한 노드들의 행위를 관찰하여 거짓 경보 메시지를 탐지하는 가변 정밀도 러프집합 기반 부정행위 탐지 방법을 제안한다. 차량 네트워크에서 이동하는 노드의 타당한 행위들로부터 경보 프로파일인 경보 정보 시스템이 먼저 구축되어진다. 어떤 이동하는 차량이 다른 차량으로부터 경보 메시지를 받으면, 수신차량은 그 메시지로부터 경보종류를 알아낸다. 경과시간 후, 수신차량이 경보 전송차량으로부터 비콘을 받으면, 수신차량은 경보 정보 시스템으로부터 가변 정밀도 러프집합을 사용하여 상대적 분류 오차를 계산한다. 만일 그 상대적 분류 오차가 그 경보종류의 최대 허용 가능한 분류 오차보다 크면, 수신 차량은 그 메시지를 거짓 경보 메시지로 결정한다. 제안하는 방법의 성능은 모의실험을 통하여 2가지 척도, 즉 정확률과 부정확률로 평가되어진다.
온라인 게임 산업이 급격히 성장함에 따라 경제적 이득을 목적으로 한 악성 행위가 증가되고 있다. 본 논문에서는 온라인 게임 내 악성 행위 중 높은 비중을 차지하는 게임 봇 탐지를 위한 모티베이션 기반 ERG 이론을 적용한 탐지 방법을 제안한다. 기존에 연구된 행위 기반 탐지 기법들이 특정 행위들을 특성치로 선정하여 분석하였다면, 본 논문에서는 모티베이션 이론을 적용하여 행위 분석을 수행하였다. 실제 MMORPG의 데이터를 분석하여 본 결과, 온라인 게임 내에서도 정상 사용자는 실제 세계와 마찬가지로 모티베이션과 관련된 ERG 이론이 잘 적용되는 것을 확인하였다. 반면에, 게임 봇은 정상 사용자와 다르게 특정 목적을 위한 행동 패턴이 나타나기 때문에 모티베이션 이론을 적용하여 탐지할 경우 정상 사용자와는 다른 행동 패턴을 보이는 것을 발견하였다. 이를 통해 ERG 이론을 적용한 봇 탐지 방법을 국내 7위의 규모의 게임에 적용하여 봇 제재 리스트와 교차 분석한 결과, 99.74% 의 정확도로 정상 사용자와 봇을 분류할 수 있었다.
비정상 행위의 탐지를 위한 침입탐지 시스템의 성능을 좌우하는 가장 큰 요인들은 패킷의 손실없는 수집과 해당 도메인에 알맞은 분류 기법이라 할 수 있다. 본 논문에서는 기존의 탐지엔진에 적용된 알고리즘의 부류에서 벗어나 Instance 기반의 알고리즘인 IBL(Instance Based Learning)을 선택하여 학습시간의 단축과 패턴생성에 따른 분류근거의 명확성을 고려였다. 또한, 기존 IBL에 포함되어 있는 Symbolic value 의 거리계산 방식에서 네트워크의 로우 데이터인 패킷을 처리하는데 따르는 문제를 해결하기 위해 VDM(Value Difference Matrix)을 사용함으로써 탐지률을 향상시킬 수 있었다. Symbolic value간의 거리계산에 따른 성능향상의 정도를 알아보기 위해 VDM 적용 유무에 따른 실험결과와 탐지엔진에 적용되었던 알고리즘들인 COWEB 과 C4.5를 이용한 결과를 비교분석 하였다.
침입탐지시스템은 공격이라고 판단되면 경보를 발생하여 보안 관리자에게 알려주거나 자체적으로 대응을 하게 된다. 그러나 이러한 경보들 중에 오경보가 많이 포함되어 있어 침입탐지시스템의 성능을 저하시킬 뿐 아니라 대량의 경보자체가 보안메커니즘에 방해가 되고 있다. 특히 오경보중 False Positive가 전체 오경보의 대부분을 차지하고 있다. 즉, False Positive는 정상 행위를 침입행위로 오인하여 판단하는 것을 의미한다. 경보들 중 이러한 오경보들은 네트워크 전반에 걸친 보안 서비스의 질을 하락시키는 원인이 된다. 따라서 침입탐지시스템의 성능향상을 위해서는 이러한 오경보 문제가 반드시 해결되어야 한다. 본 논문에서는 침입탐지시스템의 오경보를 감소시키는 결정트리 기반 오경보 분류모델을 제안하였다. 결정트리 기반 오경보 분류 모델은 침입탐지시스템의 오경보율을 감소시키고 침입탐지율을 향상시키는 역할을 수행한다는 것을 확인할 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.