False Positive Reduction for IDS using Decision Tree

결정트리를 이용한 IDS의 False Positive 감소기법

  • Published : 2010.05.28

Abstract

침입탐지시스템은 공격이라고 판단되면 경보를 발생하여 보안 관리자에게 알려주거나 자체적으로 대응을 하게 된다. 그러나 이러한 경보들 중에 오경보가 많이 포함되어 있어 침입탐지시스템의 성능을 저하시킬 뿐 아니라 대량의 경보자체가 보안메커니즘에 방해가 되고 있다. 특히 오경보중 False Positive가 전체 오경보의 대부분을 차지하고 있다. 즉, False Positive는 정상 행위를 침입행위로 오인하여 판단하는 것을 의미한다. 경보들 중 이러한 오경보들은 네트워크 전반에 걸친 보안 서비스의 질을 하락시키는 원인이 된다. 따라서 침입탐지시스템의 성능향상을 위해서는 이러한 오경보 문제가 반드시 해결되어야 한다. 본 논문에서는 침입탐지시스템의 오경보를 감소시키는 결정트리 기반 오경보 분류모델을 제안하였다. 결정트리 기반 오경보 분류 모델은 침입탐지시스템의 오경보율을 감소시키고 침입탐지율을 향상시키는 역할을 수행한다는 것을 확인할 수 있었다.

Keywords