• 제목/요약/키워드: 행위기반탐지

검색결과 325건 처리시간 0.029초

API 통계 기반의 워드 클라우드를 이용한 악성코드 분석 기법 (Malware Analysis Mechanism using the Word Cloud based on API Statistics)

  • 유성태;오수현
    • 한국산학기술학회논문지
    • /
    • 제16권10호
    • /
    • pp.7211-7218
    • /
    • 2015
  • 악성코드는 하루 평균 수만 건 이상이 발생하고 있으며, 신종 악성코드의 수는 해마다 큰 폭으로 증가하고 있다. 악성코드를 탐지하는 방법은 시그니쳐 기반, API 흐름, 문자열 등을 이용한 다양한 기법이 존재하지만 대부분의 탐지 기법들은 악성코드를 우회하는 공격 기법으로 인해 신종 악성코드를 탐지하는데 한계가 있다. 따라서 신종 악성코드를 효율적으로 탐지하기 위한 연구가 많이 진행되고 있다. 그중 시각화 기법을 통한 연구가 최근 활발하게 이루어지고 있으며, 악성코드를 직관적으로 파악할 수 있으므로 대량의 악성코드를 효율적으로 탐지하고 분석할 수 있다는 장점이 있다. 본 논문에서는 악성코드와 정상파일에서 Native API 함수를 추출하고 해당 Native API가 악성코드에서 발생하는 확률에 따라서 F-measure 실험을 통해 가중치의 합을 결정하고, 최종적으로 가중치를 이용하여 워드 클라우드에서 텍스트의 크기로 표현되는 기법을 제안한다. 그리고 실험을 통해 악성코드와 정상파일에서 사용하는 Native API의 가중치에 따라서 악성코드를 판단할 수 있음을 보인다. 제안하는 방식은 워드 클라우드를 이용하여 Native API를 시각적으로 표현함으로써 파일의 악성 유무를 판단하고, 직관적으로 악성코드의 행위를 분석할 수 있다는 장점이 있다.

Opcode와 API의 빈도수와 상관계수를 활용한 Cerber형 랜섬웨어 탐지모델에 관한 연구 (A Study on the Cerber-Type Ransomware Detection Model Using Opcode and API Frequency and Correlation Coefficient)

  • 이계혁;황민채;현동엽;구영인;유동영
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제11권10호
    • /
    • pp.363-372
    • /
    • 2022
  • 최근 코로나 19 팬더믹 이후 원격근무의 확대와 더불어 랜섬웨어 팬더믹이 심화하고 있다. 현재 안티바이러스 백신 업체들이 랜섬웨어에 대응하고자 노력하고 있지만, 기존의 파일 시그니처 기반 정적 분석은 패킹의 다양화, 난독화, 변종 혹은 신종 랜섬웨어의 등장 앞에 무력화될 수 있다. 이러한 랜섬웨어 탐지를 위한 다양한 연구가 진행되고 있으며, 시그니처 기반 정적 분석의 탐지 방법과 행위기반의 동적 분석을 이용한 탐지 연구가 현재 주된 연구유형이라고 볼 수 있다. 본 논문에서는 단일 분석만을 이용하여 탐지모델에 적용하는 것이 아닌 ".text Section" Opcode와 실제 사용하는 Native API의 빈도수를 추출하고 K-means Clustering 알고리즘, 코사인 유사도, 피어슨 상관계수를 이용하여 선정한 특징정보들 사이의 연관성을 분석하였다. 또한, 타 악성코드 유형 중 웜과 Cerber형 랜섬웨어를 분류, 탐지하는 실험을 통해, 선정한 특징정보가 특정 랜섬웨어(Cerber)를 탐지하는 데 특화된 정보임을 검증하였다. 위와 같은 검증을 통해 최종 선정된 특징정보들을 결합하여 기계학습에 적용하여, 최적화 이후 정확도 93.3% 등의 탐지율을 나타내었다.

데이터 분석 기반 항공안전관리체계 개선에 관한 연구 (Research on Improving Aviation Safety Management System Based on Data Analysis)

  • 변해윤
    • 한국재난정보학회:학술대회논문집
    • /
    • 한국재난정보학회 2023년 정기학술대회 논문집
    • /
    • pp.45-46
    • /
    • 2023
  • 본 논문은 국제민간항공기구(ICAO)의 안전 정의를 기반으로, 항공안전을 유지하기 위해 체계적인 안전관리시스템(Safety Management System, SMS)이 필요함을 강조한다. 특히, COVID-19 이후의 항공 환경 변화에 빠르게 대응할 수 있는 안전관리체계의 필요성을 제기하였으며, 또한, 기존의 하인리히의 법칙을 확장한 Bird의 신도미노 이론을 활용하여 '안전하지 않은 행위'를 세부적으로 분석하고 데이터를 기반으로 이를 탐지하고 관리할 수 있는 방안을 제시한다. 이를 통해 사고나 사건 발생 이전에 이상 경향을 파악하는 중요성을 강조하며, 이를 위해 항공안전데이터를 수집하고 전처리하여 분석의 기반을 마련하고자 한다. 본 논문은 데이터 분석 기술을 활용하여 항공안전을 향상시키는 방법을 탐구하고, 이를 통해 예방적 안전관리의 기반을 제공할 수 있을 것으로 기대하며, 더불어, 데이터 분석 기술의 중요성을 강조하며, 이를 적극적으로 도입하여 안전성을 높이는데 핵심 역할을 할 것을 희망한다.

  • PDF

RGB-D 모델을 이용한 강건한 객체 탐지 및 추적 방법 (A Robust Object Detection and Tracking Method using RGB-D Model)

  • 박서희;전준철
    • 인터넷정보학회논문지
    • /
    • 제18권4호
    • /
    • pp.61-67
    • /
    • 2017
  • 최근 지능형 CCTV는 빅 데이터, 인공지능 및 영상 분석과 같은 분야와 결합하여 다양한 이상 행위들을 탐지하고 보행자와 같은 객체의 전반적인 상황을 분석할 수 있으며, 이러한 지능형 영상 감시 기능에 대한 영상 분석 연구가 활발히 진행되고 있는 추세이다. 그러나 일반적으로 2차원 정보를 이용하는 CCTV 영상은 위상학적 정보 부족으로 인해 객체 오 인식과 같은 한계가 존재한다. 이러한 문제는 두 대의 카메라를 사용하여 생성된 객체의 깊이 정보를 영상에 추가함으로써 해결 할 수 있다. 본 논문에서는 가우시안 혼합기법을 사용하여 배경 모델링을 수행하고, 모델링 된 배경에서 전경을 분할하여 움직이는 객체의 존재 여부를 탐지한다. RGB 정보 기반 분할 결과를 이용하여 깊이 정보 기반 분할을 수행하기 위해 두 대의 카메라를 사용하여 스테레오 기반 깊이 지도를 생성한다. RGB 기반으로 분할된 영역을 깊이 정보를 추출하기 위한 도메인으로 설정하고, 도메인 내부에서 깊이 기반 분할을 수행한다. 강건하게 분할된 객체의 중심점을 탐지하고 방향을 추적하기 위해 가장 기본적인 객체 추적 방법인 CAMShift 기법을 적용하여 객체의 움직임을 추적한다. 실험을 통하여 제안된 RGB-D 모델을 이용한 객체 탐지 및 추적 방법의 우수성을 입증하였다.

저 CPU 부하를 갖는 행위 기반 스마트폰 악성 앱 탐지 기법 (Detecting Malwares on Smartphones Using a Novel Behavior Analysis with Low CPU Overhead)

  • 이정민;안우현
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2011년도 한국컴퓨터종합학술대회논문집 Vol.38 No.1(A)
    • /
    • pp.305-308
    • /
    • 2011
  • 최근 스마트폰 사용자의 급격한 증가와 앱스토어를 통한 새로운 스마트폰용 앱의 수익 모델은 스마트폰 용 앱 시장의 폭발적인 성장을 가져왔다. 이에 따라 스마트의 악성 앱에 의한 위협 역시 매우 커지고 있다. 특히 기기의 특성상 스마트폰은 사용자의 개인정보나 인증서 같은 민감한 데이터가 많고, 문자 메시지 및 통화 서비스와 같은 과금을 유발하는 기능이 많으므로 실제 피해가 발생할 경우 그 피해는 매우 클 것으로 예상된다. 실제 이런 다양한 악성 앱들이 이미 발견되고 있으므로 스마트 폰 보안에 대한 연구는 매우 시급하다고 할 수 있다. 이에 따라 본 논문에서는 스마트폰 환경에서, 최소한의 CPU 부하로 악성 앱을 탐지하는 시스템을 제안함으로써 스마트폰에서의 새로운 보안 대책을 제안한다.

사용자 정의 함수를 이용한 BERT 와 LSTM 기반 랜섬웨어 패밀리 분류 방법 연구 (A Study on BERT and LSTM-based Ransomware family classification methods using User-defined functions)

  • 김진하;최두섭;임을규
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2024년도 춘계학술발표대회
    • /
    • pp.377-380
    • /
    • 2024
  • 최근 악성코드 제작 기술의 고도화에 따라 악성코드의 변종이 전세계적으로 급격히 증가하고 있다. 이러한 대량의 악성코드를 신속하고 정확하게 탐지하기 위한 새로운 악성코드 탐지 기술에 관한 연구가 절실히 필요하다. 본 연구는 기존의 정적 분석과 동적 분석 방법의 한계를 극복하기 위한 방법을 제안한다. 신속한 데이터 수집을 위하여 정적 분석을 이용하여 사용자 정의 함수의 어셈블리어 데이터를 수집하고 BERT 로 임베딩하고 LSTM 으로 악성코드를 분류하는 모델을 제안한다. 분류 데이터는 행위가 정확한 랜섬웨어를 사용하였고 총 세 종류의 랜섬웨어를 분류하였고 다중 분류의 결과로 85.5%의 분류 정확도를 달성하였다.

시간에 따라 변하는 사용자 관심도 학습 (Profile Learning for Concept Change Over Time)

  • 권현철;박영택
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2001년도 가을 학술발표논문집 Vol.28 No.2 (2)
    • /
    • pp.166-168
    • /
    • 2001
  • 근래에 들어서 인터넷의 발전에 따라 사용자의 정보 검색 및 정보 서비스 이용에 대한 수요량이 많아지고 있으며, 이와 동시에 사용자 개인마다 적합하지 않은 정보에 대한 검색 시간과 서비스 이용에 대한 비용이 늘어나고 있다. 이에 따라서 사용자가 인터넷을 이용하면서 일어나는 행위들에 대한 정보를 수집하고, 이를 학습하여 생성한 사용자 프로파일을 기반으로 사용자 개인마다 맞추어진 적합한 정보를 제공하는 개인화 서비스가 늘어나고 있다. 본 논문에서는 사용자의 여러 행위에 대해 비 감독 학습 방법인 클러스터링을 이용하여 사용자 관심 클러스터를 생성, 사용하여 기존의 사용자 프로파일 학습에서 간과하고 있는 시간에 따라 변화하는 사용자의 관심에 대한 변화를 탐지하고, 변화하는 사용자의 관심 이동 형태에 따라 이를 사용자 프로파일을 생성하는 학습에 적용할 수 있도록 하는 방법을 제시하므로 해서 기존의 개인화를 위한 사용자 프로파일 학습 방법보다 진보한 학습 방법을 지닌 시스템 모델을 제시하려 한다.

  • PDF

한우사에서 승가 검출을 위한 카메라 위치 (Camera Position for Mounting Detection in a Korean Cattle Farm)

  • 최동휘;김희곤;정용화;박대희
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2013년도 추계학술발표대회
    • /
    • pp.1439-1441
    • /
    • 2013
  • 본 연구에서는 비디오 감시 시스템을 기반으로 한우 축사에서 승가 행위 검출을 위한 최적의 카메라 위치를 결정한다. 실외 환경에서는 소들간의 겹침이나 조명 변화 등 다양한 어려움이 발생하기 때문에, 이를 극복하기 위하여 승가 시 소의 몸체가 올라간다는 특성을 이용한다. 즉, 등높이가 1.2m에서 1.3m 사이 크기의 한우를 사육하는 축사에서 축사 측면에 1.55m 높이로 카메라를 설치하고 여기서 획득된 영상으로 실험한 결과, 발정기 탐지를 위한 승가 행위를 자동으로 검출할 수 있음을 확인하였다.

윈도우 이벤트 로그 기반 PC 비정상 종료 분석 및 활용방안 (Analysis of Unexpected Shutdown Based on Windows Event Log(EVTX) and its Applications in forensic)

  • 김하영;박현민;김기범
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2022년도 춘계학술발표대회
    • /
    • pp.33-36
    • /
    • 2022
  • 이벤트 로그(Event Log)는 윈도우 운영체제에서 시스템 로그를 기록하는 형식으로 시스템 운영에 대한 정보를 체계적으로 관리한다. 이벤트는 시스템 자체 또는 사용자의 특정 행위로 인해 발생할 수 있고, 그러한 이벤트 로그는 시스템의 시작과 종료뿐만 아니라 기업 보안 감사, 악성코드 탐지 등 행위의 근거로 사용될 수 있다. 본 논문에서는 PC 종료 관련 실험을 통해 이벤트 로그와 ID를 분석하였다. 분석 결과를 통해 PC의 정상 및 비정상 종료 여부를 판단하여, 현장 압수·수색 시 해당 저장매체에 대해 선별압수·매체압수의 해당 여부 식별이 가능하다. 본 연구는 현장수사관이 디지털증거 압수·수색 시 절차적 적법성과 증거능력 확보의 근거 활용에 기여할 수 있다.

YOLO 기반 학교폭력 감지 시스템 (YOLO-based School Violence Detection System)

  • 신찬휘;문미경
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2023년도 제68차 하계학술대회논문집 31권2호
    • /
    • pp.703-704
    • /
    • 2023
  • 학교폭력은 교육 환경에서 심각한 문제이다. 피해자에게 심리적 고통과 육체적 상해를 입히고 학교 내 안전과 안정성을 위협한다. 이에 많은 교육기관과 정부 기관이 학교폭력 예방과 대처를 위한 다양한 방안을 제시하고 있지만, 여전히 어려운 문제이다. 최근에는 인공지능 기술을 활용하여 학교폭력 방지와 대처에 관한 연구가 이루어지고 있다. 본 연구에서는 YOLOv5(You Only Look Once version 5) 딥러닝 알고리즘을 활용하여 학교 내부에서 발생하는 폭력 행위를 실시간으로 탐지하는 모델을 제안한다. 이 모델은 CCTV와 같은 영상 데이터를 입력으로 받아들여 학교 내부에서 발생하는 폭력 행위를 실시간으로 식별하는 것을 목표로 한다.

  • PDF