Acknowledgement
This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT) (No. NRF-2022R1A4A1032361)
References
- "Total Amount of malware and pua: New Malware", AV-TEST, 2024, https://portal.av-atlas.org/malware
- "Malware feature information for utilizing artificial intelligence technology", KISA, 2021.06.07, https://www.boho.or.kr/kr/bbs/view.do?bbsId=B0000127&nttId=36076&menuNo=205021
- M. Sikorski and A. Honig, Practical Malware Analysis: The Hands-On Guide to Dissecting Malicious Software, San Francisco, CA, USA: No starch press, 2012.
- S. K. Pandey and B. M. Mehtre, "Performance of malware detection tools: A comparison", Proc. IEEE Int. Conf. Adv. Commun. Control Comput. Technol., pp. 1811-1817, May 2014.
- DEVLIN, Jacob, et al. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.
- HOCHREITER, Sepp; SCHMIDHUBER, Jurgen. Long short-term memory. Neural computation, 1997, 9.8: 1735-1780 https://doi.org/10.1162/neco.1997.9.8.1735
- L. Nataraj, S. Karthikeyan, G. Jacob, and B. S. Manjunath. "Malware images: visualization and automatic classification". In Proceedings of the 8th International Symposium on Visualization for Cyber Security, 2011, Pages 1-7
- MaleVis: A Dataset for Vision Based Malware Recognition, hacettepe, 2019, https://web.cs.hacettepe.edu.tr/selman/malevis/index.html
- Microsoft Malware Classification Challenge (BIG 2015), keggle, https://www.kaggle.com/c/malware-classification, 2015
- O . Aslan and A. A. Yilmaz, "A New Malware Classification Framework Based on Deep Learning Algorithms," in IEEE Access, vol. 9, pp. 87936-87951, 2021. https://doi.org/10.1109/ACCESS.2021.3089586
- Narayanan, B.N.; Davuluru, V.S.P. Ensemble Malware Classification System Using Deep Neural Networks, Electronics 2020, 9(5):721, April 2020
- Aurangzeb, S., Anwar, H., Naeem, M.A. et al. BigRC-EML: big-data based ransomware classification using ensemble machine learning. Cluster Comput 25, 3405-3422, 2022. https://doi.org/10.1007/s10586-022-03569-4
- online malware repository that produces active malware samples to security researchers, virusshare, https://virusshare.com/
- Detect-It-Easy, horsicq, 2024.04.22, https://github.com/horsicq/Detect-It-Easy
- GHIDRA, National Security Agency, https://ghidra-sre.org/