Most banks use only demographic information such as gender, age, occupation and address to segment customers, but they do not reflect financial behavior patterns of customers. In this study, we aim to solve the problems by using various big data in a bank and to develop customer segmentation method which can be widely used in many banks in the future. In this paper, we propose an approach of segmenting clustering blocks with bottom-up method. This method has an advantage that it can accurately reflect various financial needs of customers based on various transaction patterns, channel contact patterns, and existing demographic information. Based on this, we will develop various marketing models such as product recommendation, financial need rating calculation, and customer churn-out prediction based on this, and we will adapt this models for the marketing strategy of NH Bank.
The Journal of the Korea institute of electronic communication sciences
/
v.15
no.6
/
pp.1113-1122
/
2020
Recently, as violent crimes of crime without reason (Korea : Do not ask), women and the elderly are getting serious. In the existing system, many CCTVs are installed, but it is difficult to prevent crime due to only follow-up measures after a crime occurs. This device prevents crime through this device for incidents in shaded areas and closed spaces such as apartments and buildings. To do this, we research this technology to develop products and software. It sends an alarm signal using communication technology to a specific place where you want to receive an event of an alarm or a CCTV device operated using image analysis big data technology and convergence sensor technology for a specific target of the behavior expected to be a crime or movement. Develop the device. This development device researches and develops this device and supplies low-cost devices to consumers, which is used as a device that predicts the occurrence of crime in advance, processes it as an alarm signal in real time, and transmits it, and constitutes a standalone device and a server. Will provide the device to be connected.
The Journal of the Convergence on Culture Technology
/
v.6
no.1
/
pp.31-36
/
2020
Corporate Culture Marketing is a marketing tool that enhances a company's cultural image or conveys its image through culture. Culture Consumer value analysis is important predictive data in identifying the value and pursuit of life in individual consumption behavior, explaining the choice behavior of culture consumers, and serves as the basis for decision making. The research method was linked to the text mining and opinion mining techniques of big data, and extracted positive, negative and neutral words. The analysis targets culture consumers participating in concerts at Hyundai Card's 'Super Concert', which is subject to domestic consumers, and CJ ENM's 'KCON', which is subject to foreign consumers. The culture consumer value elements of corporate culture marketing are the basic conditions, and they were derived as 'Consensus Communication (Expression of Sensibility)', 'Participation Sharing(VIP Belonging)', 'Social Change Issue', 'Differentiating Services', 'Price Discount Benefit' and 'Location Quality'. In the future, we will need to foster 'Culture Technology Marketers' and apply them in areas such as arts management planning, cultural investment, cultural distribution, cultural space, Corporate Culture, CSR and K-pop marketing to enhance corporate interests and brand value and enhance brand value.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2021.05a
/
pp.240-243
/
2021
Recently, there have been research results of applying Big data and AI technologies to the evaluation and individual learning for education. It is information technology innovations that collect dynamic and complex data, including student personal records, physiological data, learning logs and activities, learning outcomes and outcomes from social media, MOOCs, intelligent tutoring systems, LMSs, sensors, and mobile devices. In addition, e-learning was generated a large amount of learning data in the COVID-19 environment. It is expected that learning analysis and AI technology will be applied to extract meaningful patterns and discover knowledge from this data. On the learner's perspective, it is necessary to identify student learning and emotional behavior patterns and profiles, improve evaluation and evaluation methods, predict individual student learning outcomes or dropout, and research on adaptive systems for personalized support. This study aims to contribute to research in the field of education by researching and classifying machine learning technologies used in anomaly detection and recommendation systems for educational data.
User authentication is the first step to network security. There are lots of authentication types, and more than one authentication method works together for user's authentication in the network. Except for biometric authentication, most authentication methods can be copied, or someone else can adopt and abuse someone else's credential method. Thus, more than one authentication method must be used for user authentication. However, more credential makes system degrade and inefficient as they log on the system. Therefore, without tradeoff performance with efficiency, this research proposed user's behavior based authentication for secure communication, and it will improve to establish a secure and efficient communication.
The UTAUT was presented as a comprehensive of eight existing theories to improve the limit of Technology Acceptance Model (TAM), and it has been also utilizing in various fields related to acceptance and diffusion of new technology. In this study, we analyzed factors utilized in UTAUT through meta-analysis, and confirms the consistency of the model. We presented the principal factors and the additional factors. Moreover, we presented differences and suggestions through comparative analysis with previous researches. The meta-analysis showed that satisfaction, hedonic motivation, attitude, perceived enjoyment showed a important factors as additional factors. Based on this result, we presented an extended UTAUT model. In the case of Korea studies, it was found that increasing the degree of behavior intention is the most important factor leading to use behavior. The results of this research will be able to support researchers who research the acceptance and diffusion of new technologies, and companies trying to launch new products.
Journal of the Korea Society of Computer and Information
/
v.25
no.9
/
pp.53-62
/
2020
Product recommendation services that have been researched recently are only recommended through the customer's product purchase history. In this paper, we propose the digital signage service through customers' behavior pattern analysis that is recommending through not only purchase history, but also behavior pattern that customers take when choosing products. This service analyzes customer behavior patterns and extracts interests about products that are of practical interest. The service is learning extracted interest rate and customers' purchase history through the Wide & Deep model. Based on this learning method, the sparse vector of other products is predicted through the MF(Matrix Factorization). After derive the ranking of predicted product interest rate, this service uses the indoor signage that can interact with customers to expose the suitable advertisements. Through this proposed service, not only online, but also in an offline environment, it would be possible to grasp customers' interest information. Also, it will create a satisfactory purchasing environment by providing suitable advertisements to customers, not advertisements that advertisers randomly expose.
Proceedings of the Korea Information Processing Society Conference
/
2019.10a
/
pp.781-784
/
2019
최근 AI를 산업 서비스에 적용하기 위해 많은 회사들이 활발히 연구를 하고 있다. 아마존과 넷플릭스 같은 거대 기업들은 이미 빅데이터와 AI 머신러닝을 이용한 추천 시스템을 구현하였고 아마존은 매출의 35%가 추천에 의해 발생하고 넷플릭스 75%의 사용자가 추천을 통해 영화를 선택한다고 보고되었다. 이러한 두 기업의 높은 추천 효율성의 이유는 협업 필터링(Collaborative filtering)과 같은 다양한 추천 알고리즘과 방대한 상품 및 고객 행동(구매, 시청 등) 데이터 등이 존재하고 있기 때문이다. 기계학습에서 알고리즘 학습을 위한 데이터의 양이 많지 않을 경우 알고리즘의 성능을 보장할 수 없다는 것이 일반적인 의견이다. 방대한 데이터를 가진 기업에서 추천 알고리즘을 적극적으로 활용 및 연구하고 있는 것도 이러한 이유 때문이다. 반면, 오프라인 및 여행사 기반에서 온라인 기반으로 영역을 차츰 확대하고 있는 항공 서비스 고객 데이터의 경우, 산업의 특성상 많은 회원에 비해 고객 1명당 온라인에서 활동하는 이력이 많지 않은 것이 특징이다. 이는, 추천 알고리즘을 통한 서비스 제공에서 큰 제약사항으로 작용한다. 본 연구에서는, 이러한 희박한 고객 활동 데이터에서 최신성 기반의 추천 시스템을 통하여 제약사항을 극복하고 추천 효율을 높이는 방법을 제안한다. 고객의 최근 접속 이력 로그를 시간 기준으로 데이터 셋을 분할하여 추천 알고리즘에 반영하였을 때, 추천된 노선에 대한 고객의 반응을 추천 성능 지표인 CTR(Click-Through Rate)로 측정하여 성능을 확인해 보았다.
Ji, Geonwoo;Lee, Seongchan;Msigwa, Constantino;Bernard, Denis;Yun, Jaeseok
Proceedings of the Korean Society of Computer Information Conference
/
2022.07a
/
pp.325-327
/
2022
최근 스마트 기기 시장이 커지며 이와 함께 스마트 기기를 이용한 연구가 활발하다. 현재 많이 사용되는 스마트 기기인 스마트워치와 스마트폰에는 다양한 센서들이 내장되어있다. 이 센서들을 통해 생성된 데이터를 이용하면 사용자의 행동 분류, 건강관리 등 사용자에게 도움이 되는 서비스를 제공할 수 있다. 본 논문에서는 어플리케이션 개발을 통해 상용 스마트기기인 갤럭시 워치 4와 갤럭시 S10에 내장되어있는 센서의 원시데이터를 수집하고 수집한 데이터를 oneM2M 표준 플랫폼에 저장하였다. oneM2M 표준 플랫폼에 저장된 데이터는 API를 통해 손쉽게 사용할 수 있으며 여러 대의 스마트 기기 데이터를 수집하고 빅데이터를 구축한다면 많은 연구자들이 보다 편리하게 데이터를 이용하여 다양한 의미 있는 연구들을 진행할 수 있을 것이다.
For a place-recommendation model based on user's behavior and multi-attribute attitude in this thesis. We focus groups that show similar patterns of visiting restaurants and then compare one and the other. We make use of The Fishbein Equation, Pearson's Correlation Coefficient to calculate multi-attribute attitude scores. Furthermore, We also make use of Preference Prediction Algorithm and Distance based method named "Euclidean Distance" to provide accurate results. We can demonstrate how excellent this system is through several experiments carried out with actual data.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.